Search In this Thesis
   Search In this Thesis  
العنوان
Nano-Reinforcement effects on damping properties of polymeric composite materials under different environmental conditions /
المؤلف
Abou EL-Wafa, Mona Abou EL-Wafa Megahed.
هيئة الاعداد
باحث / منى أبو الوفا مجاهد أبو الوفا
مشرف / محمد عبد الحميد محمد حسن عبادة
مشرف / إيمان محمد أحمد طه
مشرف / إيمان محمد أحمد طه
الموضوع
mechanical engineering.
تاريخ النشر
2012.
عدد الصفحات
80 p. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الهندسة الكهربائية والالكترونية
تاريخ الإجازة
1/1/2012
مكان الإجازة
جامعة الزقازيق - كلية الهندسة - mechanical design and production engineering
الفهرس
Only 14 pages are availabe for public view

from 98

from 98

Abstract

Silica, alumina and carbon nanoparticles were dispersed into epoxy resin with an
ultrasonic liquid processor at 0.5, 1.5 and 3wt% content. Hardness, tensile and
dynamic tests were carried out on these nanocomposites in comparison to neat
epoxy. The hardness test shows that the addition of nanoparticles to epoxy resin
increases the hardness over neat epoxy. The hardness and tensile strength are
improved by adding 0.5wt% silica, 0.5wt% alumina and 1.5wt% carbon
nanoparticles. The tensile modulus increases as the nanoparticle content
increases. Further comparison of the theoretical predictions with experimental
moduli show acceptable prediction models. The effect of adding nanoparticles in
addition to the effect of varying moisture content on the dynamic behavior of
nanocomposites was investigated.
Results indicate that addition of nano powders tends to lower moisture
absorption of epoxy except for the 1.5wt% and 3 wt% alumina and silica
nanocomposites. Damping results show that dry silica and alumina
nanocomposite have lower damping capability than dry neat epoxy at high
frequencies. At half saturation, the loss factor of nanocomposites is higher than
those determined under dry and saturated conditions. As the moisture reaches
the saturation level the loss factor reduces. However, the damping behavior of
some epoxy nanocomposites improves as a result of water absorption especially
at high frequencies.