Search In this Thesis
   Search In this Thesis  
العنوان
Evaluation of Some Mechanical and Physical Properties of Glass-Ionomer Restorative Material Modified with Zirconium Dioxide nanoparticles
المؤلف
Alshaibani;Dhafer Abdulwasea Qasem
هيئة الاعداد
مشرف / ظافرعبدالواسع قاسم الشيباني
مشرف / محمد صلاح عبدالعزيز ناصف
مشرف / دينا أحمد الرفاعي
مشرف / ///////////
مشرف / //////////////
تاريخ النشر
2021
عدد الصفحات
iii(p120)
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
طب الأسنان
الناشر
تاريخ الإجازة
14/11/2021
مكان الإجازة
جامعة عين شمس - كلية طب الأسنان - تقويم
الفهرس
Only 14 pages are availabe for public view

from 134

from 134

Abstract

1. Wilson AD., Kent BE. A new translucent cement for dentistry. The glass ionomer cement. British Dent J 1972;132(4):133–5.
2. Anusavice KJ., Shen C., Rawls HR. Phillips’ Science of Dental Materials. vol. 11th. 2003.
3. Sakaguchi RL., Powers JM. Craig’s Restorative Dental Materials. 2012.
4. Crisp S., Lewis BG., Wilson AD. characterization of glass-ionomer cements: 2. Effect of the powder: liquid ratio on the physical properties. J Dent1976;4(6):287–90.
5. Dowling AH., Stamboulis A., Fleming GJP. The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorative. J Dent 2006;34(10):802–10.
6. Toledano M., Osorio R., Osorio E., Fuentes V., Prati C., Garcı́a-Godoy F., et al. Sorption and solubility of resin-based restorative dental materials. J Dent 2003;31(1):43–50.
7. Bayindir F and Yilmaz C. Comparison of Diametral Tensile, Flexural, and Compressive strengths og five core build-up matrials. Ataturk University Di Dergisi(2007); 17(1):18-23
8. Silva RC., Zuanon ACC., Esberard RR., Candido MSM., Machado JS. In vitro microhardness of glass ionomer cements. J Mater Sci: Materials in Medicine2007;18(1):139–42.
9. John M., Powers RLS eds. Craig’s restorative dental materials. 12th ed. Mosby Elsevier;. 2006.
10. Jain V, Platt J, Moore B, Borges G. In Vitro wear of new indirect resin composites. Oper Dent J.(2009);34(4):423-8.
11.Yli-Urpo H., Lassila LVJ., Närhi T., Vallittu PK., Wilson AD., McLean JW., et al. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dental Materials : Official Publication of the Academy of Dental Materials 2005;21(3):201–9..
12. Gu YW., Yap AUJ., Cheang P., Koh YL., Khor KA. Development of zirconia-glass ionomer cement composites. J Non-Crystalline Solids2005;351(6):508–14..
13. Hammouda IM. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J Mech Behavior of Biomed Mater 2009;2(1):73–81.
14. Lucas ME., Arita K., Nishino M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003;24(21):3787–94..
15. Al Zraikat H., Palamara JEA., Messer HH., Burrow MF., Reynolds EC., Wilson AD., et al. The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dental Materials : Official Publication of the Academy of Dental Materials 2011;27(3):235–43.
16. Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Research n.d.;37(2):108–14.
17. Palmer G., Jones FH., Billington RW., Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomater 2004;25(23):5423–31..
18. Moshaverinia A., Ansari S., Moshaverinia M., Roohpour N., Darr JA., Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia 2008;4(2):432–40.
19. Prentic L., Tyas M., Burrow M. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater 2006;22(8):746–51.
20. Finch CA. Acid–base cements: Their biomedical and industrial applications. By A. D. Wilson and J. W. Nicholson. Cambridge University Press, Cambridge, 1993. ISBN 0-521-37222-4. Polymer International 1994;35(2):215–215.
21. Tyas MJ., Burrow MF. Adhesive restorative materials: a review. Australian Dent J 2004;49(3):112–21; quiz 154.
22. Upadhya NP. Glass Ionomer Cement – The Different Generations. Trends Biomater Artif Organs 2005;18(2).
23. Greig V. Craig’s restorative dental materials, 13th edition. BDJ 2012;213(2):70,84,182,184–6,339.
24. GJ M. An atlas of glass-ionomer cement:A clinician,s Guide, 3rd ed. London 2002.
25. Kent BE., Lewis BG., Wilson AD. Glass Ionomer Cement Formulations: I. The Preparation of Novel Fluoroaluminosilicate Glasses High in Fluorine. J Dent Res 1979;58(6):1607–19.
26. Mathis RS., Ferracane JL. Properties of a glass-ionomer/resin-composite hybrid material. Dent Mater 1989;5(5):355–8.
27. Culbertson BM. Glass-ionomer dental restoratives. Progress in Polymer Sci 2001;26(4):577–609.
28. De Barra E., Hill RG. Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomater 1998;19(6):495–502.
29. Saito S, Tosaki S H k. Advances in glass-ionomer cements, Davidson C.L., Mjor I.A., Eds., Quintessence publishing Co : Berlin, Germany. Faculdade De Odontologia De Bauru - USP; 1999.
30. Crisp S, Lewis BG WA. characterization of glass-ionomer cements : the effect of tetratic acid concentration in the liquid component. J Dent 1979;7:304–12.
31. Nicholson JW., Brookman PJ., Lacy OM., Wilson AD. Fourier Transform Infrared Spectroscopic Study of the Role of Tartaric Acid in Glass-ionomer Dental Cements. J Dent Res 1988;67(12):1451–4.
32. Albers HF. tooth colored restoratives principles and techniques.BC Decker Inc Hamilton,Qntario 9th ed. 2002.
33. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomater 1998;19(6):485–94.
34. Wilson AD., Hill RG., Warrens CP., Lewis BG. The Influence of Polyacid Molecular Weight on Some Properties of Glass-ionomer Cements. J Dent Res 1989;68(2):89–94.
35. Jones DW. Dental cements: a further update. Journal (Canadian Dental Association) 1998;64(11):788–9.
36. Zimehl R., Hannig M. Non metallic restorative materials based on glass ionomer cements — recent trends and developments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000;163(1):55–62.
37. Brein WJ. dental materials and their selection. canada quintessence publishing co.,3rd ed. 2002.
38. Prosser HJ., Powis DR., Brant P., Wilson AD. characterization of glass-ionomer cements 7. The physical properties of current materials. J Dent 1984;12(3):231–40.
39. Mount GJ. Clinical placement of modern glass-ionomer cements. J Dent n.d.;24(2):99–107,.9p.
40. Prentice LH., Tyas M. The effect of oxalic acid incorporation on the setting time and strength of a glass-ionomer cement. vol. 2. 2006.
41. Prosser HJ., Powis DR., Wilson AD. Glass-ionomer Cements of Improved Flexural Strength. J Dent Res 1986;65(2):146–8.
42. Barry TI., Clinton DJ., Wilson AD. The Structure of a Glass-Io nomer Cement and its Relationship to the Setting Process. J Dent Res 1979;58(3):1072–9.
43. Wasson EA., Nicholson JW. New Aspects of the Setting of Glass-ionomer Cements. J Dent Res 1993;72(2):481–3.
44. Nicholson JW WA. the effect of storage in aqueous solution on GIC and zinc polycarboxylate dental cements. J Mater Sci Med 2000;11:357–60.
45. Naasan MA., Watson TF. Conventional glass ionomers as posterior restorations. A status report for the American J Dent. Amer J of Dent 1998;11(1):36–45.
46. Hotta M., Hirukawa H., Yamamoto K. Effect of coating materials on restorative glass-ionomer cement surface. Oper Dent 1991;17(2):57–61.
47. Rodrigues Garcia RC,De Goes MF DBCA. influence of the protecting agents on the solubility of glass ionomers. J Dent Mater 1995;8:294–6.
48. Tanaka K KK. change in tranclucency of posterior restorative glass ionomer cements. J Dent Research 2007;86:2025.
49. Wilson AD MJ. glass ionomer cements. chicago: quintessence. J Dent Res 1988.
50. Cho., Cheng. A reveiw of glass ionomer restorations in the primary dentition. J Canad Dent Assoc 1999;65(9):491–5.
51. Wilson AD., Prosser HJ., Powis DM. Mechanism of Adhesion of Polyelectrolyte Cements to Hydroxyapatite. J Dent Res 1983;62(5):590–2.
52. Watson T. Bonding of glass ionomer cement to tooth structure.in : Davidson CL, Mjor IA, eds. Advanttaces in glass ionomer cements. chicago: Quintessence, 1999:121–36.
53. Cook WD. Dental poly electrolyte cements.1. Chemistry of the early stages of the setting reaction. J Biomat Appl 1982;3:232–6.
54. Crisp S., Jennings MA., Wllson AD. A study of temperature changes occurring in setting dental cements. J Oral Rehabil 1978;5(2):139–44..
55. Czarnecka B., Limanowska-Shaw H., Nicholson JW. Buffering and ion-release by a glass-ionomer cement under near-neutral and acidic conditions. Biomater 2002;23(13):2783–8.
56. Brookman PJ., Prosser HJ., Wilson AD. A sensitive conductimetric method for measuring the material initially water leached from dental cements 4. Glass-ionomer cements. J Dent 1986;14(2):74–9.
57. Nicholson J. Fluoride-releasing dental restorative materials: an update. Balk Dent Med J. (2014); 18:60-9
58. Tiwari S. and Nandlal B. Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: an in vitro trail. Ind soci of pedo and prev Dent J. (2013);31(2):91-5
59. Bell A, Creanor L, Foye R, Saunders W. the effect of saliva on flouride release by a glass-ionomer filling material. Oral Rehabil J. (1999) 26: 407-12
60. Burgess J., Norling B., Summitt J. Resin Ionomer Restorative Materials: The New Generation. J Esth and Rest Dent 1994;6(5):207–15.
61. Tay WM., Braden M. Thermal Diffusivity of Glass-ionomer Cements. J Dent Res 1987;66(5):1040–3.
62. Anusavice KJ. Dental cements for restoration and pulp protection in philips, Science of dental materials: 10th ed, WB Saundeers Co, Philadelphia,. 1996.
63. Earl MSA., Mount GJ., Humet WR. The effect of varnishes and other surface treatments on water movement across the glass ionomer cement surface. II. Australian Dent J 1989;34(4):326–9.
64. Mount GJ. Longevity of glass ionomers. J Prosthet Dent 1986;55:682–5.
65. Kobayashi M., Kon M., Miyai K., Asaoka K. Strengthening of glass-ionomer cement by compounding short fibres with CaO–P2O5–SiO2–Al2O3 glass. Biomater 2000;21(20):2051–8.
66. Jústiz-Smith NG., Virgo GJ., Buchanan VE. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Materials characterization 2008;59(9):1273–8.
67. O, Mahony A. SP. Core buildup materials and techniques. J of Irish Dent Assoc 1999;45:84–90.
68. Noort RV. Introduction to Dental Materials. 2nd ed Mosby co., ST Louis,. 2002.
69. Williams JA., Billington RW., Pearson GJ. The comparative strengths of commercial glass-ionomer cements with and without metal additions. British Dent J1992;172(7):279–82.
70. AL-Badry IA KF. clinical use of glass ionomer cement: a literature review. The Saudi Dent J 1994;6:107–16.
71. Walmsley A, Walsh T BF. restoration of teeth (complex restorations) .restorative dentistry chicago: Churchill Livingstone. 2002.
72. Kilpatrick NM., Murray JJ., McCabe JF. The use of a reinforced glass-ionomer cermet for the restoration of primary molars: a clinical trial. British Dent J 1995;179(5):175–9.
73. Sarkar N. Metal–matrix interface in reinforced glass ionomers. Dent Mater 1999;15(6):421–5.
74. Coutinho E., Yoshida Y., Inoue S., Fukuda R., Snauwaert J., Nakayama Y., et al. Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 2007;86(7):656–61.
75. Wilson AD. Resin-modified glass ionomer cements. Int J Prostodont 1990;3:425–9.
76. Mount GJ. Glass ionomer cements and future research. Am J Dent 1994;7(5):286–92.
77. Sidhu SK., Watson TF. Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent 1995;8(1):59–67.
78. Burgess JO., Barghi N., Chan DC., Hummert T. A comparative study of three glass ionomer base materials. Am J Dent 1993;6(3):137–41.
79. Sidhu SK., Schmalz G. The biocompatibility of glass-ionomer cement materials. A status report for the American Journal of Dentistry. Am J Dent 2001;14(6):387–96.
80. Sidhu SK., Sherriff M., Watson TE. The Effects of Maturity and Dehydration Shrinkage on Resin-modified Glass-ionomer Restorations. J Dent Res 1997;76(8):1495–501.
81. Nicholson JW., Anstice HM., McLean JW. A preliminary report on the effect of storage in water on the properties of commercial light-cured glass-ionomer cements. British Dent J 1991;173(3):98–101.
82. Mitra SB., WU D., Holmes BN. An application of nanotechnology in advanced dental materials. J A D A 2003;134(10):1382–90.
83. Coutinho E., Cardoso MV., De Munck J., Neves AA., Van Landuyt KL., Poitevin A., et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater 2009;25(11):1347–57.
84. Xia Y., Zhang F., Xie H., Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36(6):450–5.
85. Paschoal MAB., Gurgel CV., Rios D., Magalhães AC., Buzalaf MAR., Machado MA de AM. Fluoride release profile of a nanofilled resin-modified glass ionomer cement. Brazilian Dent J 2011;22(4):275–9.
86. Lohbauer U., Frankenberger R., Clare A., Petschelt A., Greil P. Toughening of dental glass ionomer cements with reactive glass fibres. Biomater 2004;25(22):5217–25.
87. Thomason JL., Vlug MA. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Composites Part A: Applied Science and Manufacturing 1996;27(6):477–84.
88. Callaghan DJ., Vaziri A., Nayeb-Hashemi H. Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites. Dent Mater 2006;22(1):84–93.
89. Lohbauer U., Walker J., Nikolaenko S., Werner J., Clare A., Petschelt A., et al. Reactive fibre reinforced glass ionomer cements. Biomaterials 2003;24(17):2901–7.
90. Upadhya NP. Glass Ionomer Cement – The Different Generations. Trends Biomater Artif Organs 2005;18(2):158–65.
91. Frankenberger R, Sindel J KN. Viscous glass-ionomer cements: A new alternative to amalgam in the primary dentition? Quintessence Int 1997;28:667–76.
92. Berg JH. The continuum of restorative materials in pediatric dentistry-a review for the clinician. Pediatr Dent 1998;202:93–100.
93. Irie M., Maruo Y., Nishgawa G., Suzuki K., Watts DC. Class I Gap-formation in Highly-viscous Glass-ionomer Restorations: Delayed vs Immediate Polishing. Oper Dent 2008;33:196–202.
94. Khaled SMZ., Miron RJ., Hamilton DW., charpentier PA., Rizkalla AS. Reinforcement of resin based cement with titania nanotubes. Dent Mater 2010;26(2):169–78.
95. Elsaka SE., Hamouda IM., Swain M V. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: Influence on physical and antibacterial properties. J Dent 2011;39(9):589–98.
96. Korkmaz Y., Ozel E., Attar N., Ozge Bicer C. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers in Medical Science 2010;25(6):861–6.
97. Olsson KG, Fürst B, Andersson B CG. A long-term retrospective and clinical follow-up study of In-Ceram Alumina FPDs. Int J Prosthodont 2003;16:150–6.
98. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent 2004;92(6):557–62.
99. Piconi C., Maccauro G. Zirconia as a ceramic biomaterial. Biomater 1999;20(1):1–25.
100. Dion I., Bordenave L., Lefebvre F., Bareille R., Baquey C., Monties J-R., et al. Physico-chemistry and cytotoxicity of ceramics. J Mater Sci: Materials in Medicine1994;5(1):18–24.
101. Scotti R, Kantorski KZ, Monaco C, Valandro LF, Ciocca L BMS. SEM Evaluation of In Situ Early Bacterial Colonization on a Y-TZP Ceramic: A Pilot Study. Int J Prosthodont 2007;20:419–22.
102. Lughi V., Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010;26(8):807–20.
103. Hannink RHJ., Kelly PM., Muddle BC. Transformation Toughening in Zirconia-Containing Ceramics. J of the American Ceramic Society 2004;83(3):461–87.
104. Zarone F., Russo S., Sorrentino R. from porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent Mater 2011;27(1):83–96.
105. Aboushelib MN., Matinlinna JP., Salameh Z., Ounsi H. Innovations in bonding to zirconia-based materials: Part I. Dent Mater 2008;24(9):1268–72.
106. Lohbauer U., Zipperle M., Rischka K., Petschelt A., Müller FA. Hydroxylation of dental zirconia surfaces: characterization and bonding potential. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008;87B(2):461–7.
107. Semyari H., Sattari M., Atai M., Pournasir M. The effect of Nanozirconia mixed with glass-ionomer on proliferation of epithelial cells and adhesive molecules. Journal of Periodontology & Implant Dentistry 2012;3(2):63–8.
108. Satish G., Nainan M. Invitro evaluation of flexural strength and flexural modulus of elasticity of different composite restoratives. J Cons Dent 2006;9(4):140.
109. Lia ZC., White SN. Mechanical properties of dental luting cements. J Prosthet Dent 1999;81(5):597–609.
110. Yap A, Teoh S. compression of flexural properties of composite restoratives using the ISO and mini-flexural tests. J Oral Rehabil 2003; 30:171-177.
111. Khouw-Liu VH., Anstice H., Pearson G. An in vitro investigation of a poly(vinyl phosphonic acid) based cement with four conventional glass-ionomer cements. Part 1: flexural strength and fluoride release. J Dent 1999;27(5):351–7.
112. Kato HY, Nakaseko H ST. Influence of coating materials on conventional GIC. IADR Programs and Abstracts 2008:Abstract # 0487.
113. Aritak., Yamamoto A., Shinonaga Y., Harada K., ABE Y., Nakagawa K., et al. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glassionomer cement. Dent Mater J 2011;30(5):672–83.
114. P Ahluwalia, S Chopra, AM Thomas.Strength characteristics and marginal sealing ability of chlorhexidine-modified glass ionomer cement: An in vitro study. J Ind Soci dent (2013);30(1):41-46

115. Silva RC., Zuanon ACC., Esberard RR., Candido MSM., Machado JS. In vitro microhardness of glass ionomer cements. J Mater Sci: Materials in Medicine 2007;18(1):139–42.
116. John M., Powers RLS eds. Craig’s restorative dental materials. 12th ed. Mosby Elsevier;. 2006.
117. Roberts HW., Berzins DW., charlton DG. Hardness of Three Resin-Modified Glass-Ionomer Restorative Materials as a Function of Depth and Time. J Esth and Rest Dent 2009;21(4):262–72.
118. Xie D, Brantley WA, Culbertson BM WG. Mechanical properties and microstructures of GICs. Dent Mater 2000;16(2):129–38.
119. Gladys S, Van Meerbeek B, Braem M, Lambrechts P VG. characterization of GICs containing resin. Rev Belge Med Dent 1996;51(1):36–53.
120. Schmage P, Nergiz I, Sito F, Platzer U RM. Wear and hardness of different core build-up materials. J Biomed Mater Res B Appl Biomater 2009;91(1):71–9.
121. Cefaly DFG., Franco EB., Mondelli RFL., Francisconi PAS., Navarro MF de L. Diametral tensile strength and water sorption of glass-ionomer cements used in Atraumatic Restorative Treatment. J Appl Oral Sci: Revista FOB 2003;11(2):96–101.
122. von Fraunhofer JA., Curtis P. Physical and mechanical properties of anterior and posterior composite restorative materials. Dent Mater : Official Publication of the Academy of Dental Materials 1989;5(6):365–8.
123. Cattani-Lorente MA, Godin C MJ. Early strength of glass ionomer cements. Dent Mater 1993;9(1):57–62.
124. Mitra SB KB. . Long-term mechanical properties of glass ionomers. Dent Mater 1994;10(2):78–82.
125. Mesu FP., Reedijk T. Degradation of luting cements measured in vitro and in vivo. J Dent Res 1983;62(12):1236–40.
126. Uno S, Finger WJ FU. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater 1996;12(1):64–9.
127. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR et al. Water sorption/solubility of dental adhesive resins. Dent Mater 2006;22(10):973–80.
128. Mese A, Burrow M TM. sorption and solublity of luting cements in different solutions. J Dent Mater 2008;27(5):702–9.
129. Mortier E., Gerdolle DA., Jacquot B., Panighi MM. Importance of water sorption and solubility studies for couple bonding agent--resin-based filling material. Oper Dent n.d.;29(6):669–76.
130. Kanchanavasita W., Anstice HM., Pearson GJ. Water sorption characteristics of resin-modified glass-ionomer cements. Biomater 1997;18(4):343–9.
131. Pincelli Chaves L., Mezzaroba Ortenzi Graciano F., Bim Júnior O., Ribeiro do Vale Pedreira AP., Pigozzo Manso A., Wang L. Water interaction with dental luting cements by means of sorption and solubility. Brazilian Dental Science 2013;15(4):29–35.
132. Hickel R. two-year clinical trial chemfill rock restoring molars. Department of Operative Dentistry and Periodontology, Ludwig Maximilians University, Munich, Germany Clinical Oral Investigation 2013;17(3):1029–111.
133. Heshmat H., Banava S., Zarandi P., Faraji F. In-Vitro Evaluation of Water Sorption and Solubility of G-Cem and FujiCem in Water and Acid. J J I D A I 2013;2525(33).
134. Carvalho-Júnior JR., Guimarães LFL., Correr-Sobrinho L., Pécora JD., Sousa-Neto MD. Evaluation of solubility, disintegration, and dimensional alterations of a glass ionomer root canal sealer. Brazil Dent J 2003;14(2):114–8.
135. Keyf F., Tuna SH., ŞenM., Safrany A. Water Sorption and Solubility of Different Luting and Restorative Dental Cements. Turk J Med Sci 2007;37(1):47–55.
136. Dinakaran S. Sorption and Solubility characteristics of Compomer, Conventional and Resin Modified Glass-Ionomer Immersed In Various Media. Dent and Med Sci J 2014;13(3):41–5.
137. G.J. Pearson and A.S. Atkinson. Long-term flexural strength of glass ionomer cements. Biomat 1991;12(3):758–60.
138. ISO 9917-1: dentistry-water-based cements—part 1: powder/liquid acid–base cements. Geneva, Switzerland: International Organization for Standardization; 2007.
139. ISO-international organization for standardization .dental glass polyalkalenoate cement .Switzerland: international organization for standardization ;1986 p.13 (international standard,7489).
140. Lohbauer U. Review Dental Glass Ionomer Cements as Permanent Filling Materials? Properties, Limitations and Future Trends. Mater 2010;3:76-96.
141. Wan AC, Yap AU, Hastings GW. Acid-base complex reactions in resin modified and conventional glass ionomer cements. J Biomed mater Res 1999;5:700-704
142. Betri DFS, Bosega J, Besiassi AM, Bocaagel JAJS. Preliminary study on chitosan modified glass ionomer restoratives. Dent mater 2007; 23:1004-1010.
143. Green DJ, Hannink RHJ, Swain MV. Transformation toughening of ceramics. Boca Raton, FL: CRC Press; 1989.p.137-44
144. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25
145. YW Gua, A.U.J. Yapb, P. Cheanga, K.A. Khorc,* Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC) Biomaterials 26 (2005) 713–720.
146. Cales B, Stefani Y , Lilly E. Long-term in vivo and in vitro aging of zirconia ceramic used in orthopaedy. J Biomed Mater Res 1994;28:619-24
147.Elizabeta Gjorgievska , Gustaaf Van Tendeloo , John W. Nicholson , Nichola J. Coleman . The Incorporation of Nanoparticles into Conventional Glass-Ionomer Dental Restorative Cements. Microscopy and Microanalysis J, April 2015; 21:392-406
148. Lohbauer U, Zipperle M, Rischka K, Petschelt A and Muller FA: Hydroxylation of dental zirconia surface: characterization and bonding potential. J. Biomed. Mater. Res. B Appl. Biomater. 2008; 87(2):461-7.
149. Wang L, D, alpino P, L Pereira J. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. Applied Oral Science J. (2003) ; 11(3):162-7
150. ANSI/ADA Specification no.66 for dental glass ionomer cements. Council on dental materials, instruments, and equipment. J A D A, 1989 jul; 119(1): 205.
151. International Organization for Standardization . ISO 7489. Dental glass polyalkenoate cements. Genebra. 1986.
152. Dimkov A, Nicholson WJ, Gjorgievska E, Booth S. Compressive strength and sitting time determination of glass-ionomer cements incorporated with cetylpyridinum chloride and benzalkonium chloride. Sec Bio Med Sci., 2012; 33: 243-63.
153. Linda W, Paulo H, Lawrence G. Mechanical properties of dental restorative materials: relative contribution of laboratory test. J Appl Oral Sci 200
154. Yoshida K, Tanagawa M, Atsuta M. Solubility of three types of resin and conventional luting cements. J Oral Rehabil1998;25:285-91
155. Daugela P, Oziunas R, Zekonis G. Antibacterial potential of contemporary dental luting cements. Stomatologija 2008;10:16-21.
156. Keyf F, Tuna SH, Sen M, Safrany A. Water sorption and solubility of different luting and restorative dental cement. J Med Sci 2006;36:47-55.
157. Cattani MA, Dupuis V, Payan J, Moya F, Meyer JM: Effect of water on the physical properties resin modified glass ionomer cements. Dent Mater 1999;15:71-9.
158. Musanje L, Shu M, Darvell BW. Water sorption and mechanical behavior of cosmetic direct restorative material in artificial saliva. Dent Mater 2001;17:394-401.
159. Malacrane J, Caravalho RM, De Goes MF, Svirzero N, Pashley DH. Water sorption/solubility of dental adhesive resins. Dent Mater 2006;22:973-80.
160. Kawano F, Kon M, Kobayashi M, Miyai K. Reinforcement effect of short glass fibers with CaO-P2O5-SiO2-Al2O3 glass on strength of glass-ionomer cement. J Dent 2001;29:377-80.
تقييم بعض الخواص الميكانيكية والفيزيائية لحشوات الزجاج الأيوني المعدلة بإضافة جسيمات النانوزركونيا
بحث مقدم كجزء من مقومات الحصول علي درجه الماجستير في علم المواد الحيوية لطب الأسنان
مقدمة
الطبيب/ ظافرعبدالواسع قاسم الشيباني
بكالوريوس طب وجراحه الفم والأسنان جامعة فولجا جراد- روسيا (2004)
تحت إشراف
محمد صلاح عبدالعزيز ناصف .أ0 م0 د
أستاذ مساعد المواد الحيوية
قسم المواد الحيوية
كليه طب الأسنان
جامعه عين شمس
دينا أحمد الرفاعي.أ0م0د
أستاذ مساعد المواد الحيوية
قسم المواد الحيوية
كليه طب الأسنان
جامعه عين شمس
كليه طب الأسنان
جامعه عين شمس 2017
الملخص العربي
المقدمة
تستخدم الحشوات الزجاجية كحشو دائم ومؤقت في حين انه يعاني من الكثير من العيوب مثل الكسر والانثناء والذوبان
وقد اجريت أبحاث عديدة لتحسين هذه الصفات ففي دراسات سابقه تم أضافه جسيمات الزركونيا إلي الحشوات الزجاجية لتحسين الصفات الميكانيكية وفي هذه الدراسة تمت
أضافه نسب مختلفة من نانوجسيمات الزركونيا 3% و5% و7% الي الحشوات
الزجاجية ودراسة تأثير هذه الإضافة علي عدة صفات ميكانيكية وفيزيائية0
الغرض من البحث
هذة الدراسة وجهت لأستنباط تأثير إضافة نانوجسيمات الزركونيا علي بعض الصفات الميكانيكية والفيزيائية للحشوات الزجاجية0
المواد المستخدمة وطرق البحث
هذة الدراسة استخدمت نانوجسيمات الزركونيا والجسيمات العادية التقليدية من الحشوات الزجاجية وتم اضافه نانوجسيمات الزركونيا بنسب مختلفه هي 3% و 5% و 7% 0 وتم اختبار هذه المواد من حيث :
1-قياس مقدار مقاومة قوة الانثناء المصغرة لهذة العينات ومقارنتها بعينات مماثلة خالية من الجسيمات الموضوعة
2-قياس مقدار مقاومة قوة الضغط لهذة العينات ومقارنتها بعينات مماثلة خالية من الجسيمات الموضوعة
3-قياس مقدار صلابة السطح لهذة العينات ومقارنتها بعينات مماثلة خالية من الجسيمات الموضوعة
4- قياس مقدار امتصاص الماء لهذة العينات ومقارنتها بعينات مماثلة من الجسيمات الموضوعة
5- قياس ذوبان هذه العينات في الماء ومقارنتها بعينات مماثلة خالية من الجسيمات الموضوعة 0
وقد تم عمل اربعه قوالب من التفلون مختلفة الابعاد لقياس هذة الخواص0
تم قياس هذة الخواص بأستخدام جهاز قياس خواص الميكانيكية لمواد طب الأسنان وميزان الكتروني0
الأستنتاج
وقد أظهرت نتائج هذه الدراسة مايلي :
01 الحشوات الزجاجية الايونية التي تمت اضافتها بنسبة 3% و 5% من جسيمات نانو الزركونيا حسنت الخواص الميكانيكية (مقاومة قوة الانثناء المصغر, مقاومه الضغط و صلابة السطح) والخواص الفيزيائية ( الامتصاص والذوبان)0
02 من ناحيه اخري اظهرت هذه الدراسة ان الحشوات الزجاجية الأيونية التي احتوت علي نسبة 7% من جسيمات نانو الزركونيا لم تضف اي تحسين في الخواص الميكانيكية والفيزيائية0