Search In this Thesis
   Search In this Thesis  
العنوان
Effective Mathematical Models for Human heart to Generate Artificial Electrocardiogram Signals \
المؤلف
Ali, Ahmed Mohamed ElSayed.
هيئة الاعداد
باحث / أحمد محمد السيد علي
مشرف / هشام عبد الفتاح سعد القرنشاوى
مشرف / اسماعيل محمد عبد الرازق ابراهيم
somaasuper@yahoo.com
مناقش / أحمد محمد أحمد السيد
مناقش / ياسمين أبو السعود صالح متولي
الموضوع
Mathematics.
تاريخ النشر
2022.
عدد الصفحات
50 p. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الهندسة (متفرقات)
تاريخ الإجازة
16/2/2022
مكان الإجازة
جامعة الاسكندريه - كلية الهندسة - قسم الرياضيات والفيزياء الهندسية
الفهرس
Only 14 pages are availabe for public view

from 72

from 72

Abstract

The main objective of this research work is to develop an effective mathematical model of cardiac conduction system using a heterogeneous whole-heart model. The model is in the form of a system of modified Van der Pol and FitzHugh-Nagumo differential equations capable of describing the heart dynamics. The proposed model extends the range of normal and pathological electrocardiogram (ECG) waveforms that can be generated by the model. The effects of the respiratory sinus arrhythmia (RSA) and the Mayer waves (MW) are both incorporated to modulate the intrinsic frequency of the main oscillator that represents the sinoatrial node. Also, six pathological conditions are incorporated into the model. The heart rate variability (HRV) phenomenon is incorporated into the synthetic ECGs produced which yields valuable information about the cardiovascular health and the performance of the autonomic nervous system. The spectral analysis of the generated RR tachogram delivers power spectra that resemble those obtained from real recordings. Also, the proposed model generates synthetic ECGs characteristic to the normal rhythms as well as many pathological conditions such as sinus tachycardia, sinus bradycardia, the tall T waves, the ECG with U wave, and the Wolff-Parkinson-White syndrome. Moreover, ECGs associated with hypocalcemia, hypercalcemia, and different Atrioventricular (AV) blocks can be produced from the model. In general, the significance of this research work is in developing a mathematical model that represents the interactions between different pacemakers and allows analysis of cardiac rhythms. To show the effectiveness and the accuracy of the presented model, the results are compared to published results. The proposed model can be a useful tool to study the influences of different physiological conditions on the profile of the ECG. The synthetic ECG signals produced can be used as signal sources for the assessment of diagnostic ECG signal processing devices.