Search In this Thesis
   Search In this Thesis  
العنوان
Étude du phenomene d’électrisation par ecoulement :
المؤلف
El-Adawy, Mohamed El-Adawy Khalil.
هيئة الاعداد
باحث / محمد العدوى خليل العدوى
مشرف / تيرى باليا
باحث / محمد العدوى خليل العدوى
باحث / محمد العدوى خليل العدوى
الموضوع
Dielectric Liquids.
تاريخ النشر
2011.
عدد الصفحات
194 p. :
اللغة
الإنجليزية
الدرجة
الدكتوراه
التخصص
الهندسة
تاريخ الإجازة
1/1/2011
مكان الإجازة
جامعة المنصورة - كلية الهندسة - Department of Electrical Engineering
الفهرس
Only 14 pages are availabe for public view

from 196

from 196

Abstract

At the solid-liquid interface, a charge zone called the electrical double layer (EDL) appears. It is constituted of two zones of opposite sign: one in the solid and the other one in the liquid. When a liquid flows, an axial streaming current is generated. This current is due to the convection of the charges coming from the EDL. The physicochemical reaction at the solid-liquid interface is one of the most important parameters which control the diffuse layer development inside the liquid and, consequently, the space charge density. The analysis of the transient process gives a better understanding this phenomenon. In this context, experiments have been conducted to determine the space charge density associated with flow electrification near the solid-liquid interface. Furthermore, an analysis for the physicochemical reaction at the solid-liquid interface has been undertaken in order to identify the reagent of the liquid with the solid material. Based on the experimental data, a microscopic physicochemical “corrosion analogue” model has been developed and implemented to a developed version of “Electricite de France” finite volume CFD tool “Code_Saturne®” in order to simulate both the static and dynamic development of the EDL. Moreover, a kinetic analysis of this mechanism on the EDL development has been considered to study the effect of the governing parameters on the development process. Finally, this microscopic physicochemical corrosion analogue model is compared with a developed microscopic physicochemical adsorption model using the same code..