Full mark: 90 marks

Exam Guidelines: This Exam contains 6 questions in 2 pages, start every question in a new page.

(1) [10 pt.] If the 400 N force **F** in Figure (a) lies in the plane defined by the intersecting lines L_A and L_B with $\beta = 80^\circ$ and $\phi = 60^\circ$. If we resolve the force **F** into two vector components parallel to L_A and L_B . Determine the magnitudes of the vector components

(2) [10 pt.] Two forces act on the hook shown in Figure. Specify the coordinate direction angles of \mathbf{F}_2 so that the resultant force \mathbf{F}_R acts along the positive y axis and has a magnitude of 800 N.

- (3) [10 pt.] The link shown in Figure is pin-connected at A and rests against a smooth support at B. Determine the horizontal and vertical components of reaction at the pin A.
- (4) [15 pt.] If the sack at A in Figure has a weight of 20 N, determine the weight of the sack at B and the force in each cord needed to hold the system in the equilibrium position shown.

- (5) [15 pt.] Determine the force developed in each cable used to support the 40 lb crate shown in Figure.
- (6) [15 pt.] The rod shown in Figure is supported by two brackets at A and B. Determine the moment produced by the 700 N force \mathbf{F} , about point A and about the AB axis. Also determine the shortest distance from the force to the AB axis.

(7) [20 pt.] For the system of the three forces acting on the bracket, determine if it can be reduced to a single force. If it can, reduce it to the single force and if it can not, reduce it to the equivalent wrench. Calculate the coordinates of the point *P* in the *x-y* plane through which the resultant force or wrench acts.

