Computer and Sys. Dept. Time Allowed: 3 Hrs. 2nd Year Students. Total Marks: 2011 – 2012

System Modeling and Simulation

Final Exam

Date: 22 / 1 / 2012 Time allowed: 3 Hours

Question 1

Write the dynamic equations describing the circuit shown below. Write the equations as a second-order differential equation in y(t). Assuming a zero input, solve the differential equation for y(t) using Laplace transform methods for the parameter values and initial conditions shown in figure. Verify your answer using the **initial** command in MATLAB

Question 2

- Obtain a state-space model for the system shown below
- Draw the state diagram

Question 3

- A. The figure below shows the pole-zero map for an open-loop system, sketch the root locus diagram
- B. Find imaginary axis crossing
- C. Write down a MATLAB code that can draw the root locus for this system

Question 4

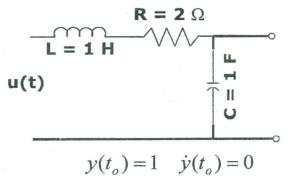
For figure shown below:

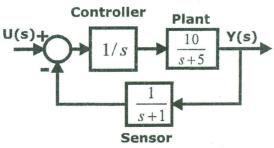
- A. Sketch the Polar Plot
- B. Find Range of **K** for system stability using Nyquist criterion

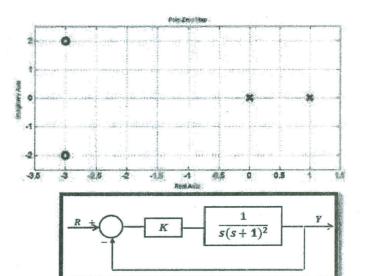
Question 5

1- A system is described by:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}$$
$$y = \begin{bmatrix} 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$


With initial conditions of $x(0) = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and u(t) = 0


- A. Find the eigenvalues of the system judge the system stability
- B. Find the **response** of the system y(t)
- C. Obtain the transfer function $\frac{Y(s)}{U(s)}$


Best wishes

Dr. Mostafa A. El-Hosseini

www.melhosseini.net

