Menoufiya University

Faculty of Engineering Shebin El-Kom

Civil Eng. Department

Date of Exam: 28/05/2018

Subject: Planning Water & Sanitation

Code: CVE 525

Year: Graduate Diploma Time Allowed: 3 hours Total Marks: 100

Answer all the following Questions (assume any missing data)

Question (2)

Given the network shown in Fig.1, the inflow at A (L/s), and outflows at B, C, D, E and F (L/s). Using Hardy Cross method, find the flows in the individual pipes comprising the network (only two trials are required)(30)

					- And the second district	A CONTRACTOR OF THE PARTY OF TH					
August Green, St.	AΒ	RC.	CD	DE	El	AF	BE				
Pugar	for	600	200	600	600	200	700				
Length (m)	MONI	15.3.1	29X) 34X)	608) 150)	150	200	[(K)				
Dianteter (mm)	250	150		0.00			in 10 % - 2 G/m				

Fig. 1

(a) Mention five different methods for prediction of future population(5)

(b) The following table shows the population in millions of a country during the years 1950 – 2010, in ten years intervals. (20)

Year	1950	1960	1970	1980	1990	2000	2010
Population	23.2	31.4	39.8	50.2	62.9	76	92
(million)		}					

1) Find the equation of the least square parabola fitting the data.

2) Estimate the population in 2050 & 2070

Knowing that:

$$\Sigma Y = aN + b\Sigma X + c\Sigma X^{2}$$
$$\Sigma XY = a\Sigma X + b\Sigma X^{2} + c\Sigma X^{3}$$
$$\Sigma X^{2}Y = a\Sigma X^{2} + b\Sigma X^{3} + c\Sigma X^{4}$$

Question (4)

[25]

a) Draw Oxygen Sag Curve showing all components and parameters. (10)

b) Wastewater discharges to a river resulting initial BOD = 12.0 mg/L and DO = 7.0 mg/L. Calculate the critical time and location downstream for minimum DO? (15) Knowing that:

- Deoxygenation constant = 0.2 /day
- Average flow speed = 0.3 m/s
- Average river depth = 3.0 m
- Saturated DO = 9.1 mg/L
- Neglect temperature correction.

Use the following formulas:

$$K_2 = \frac{3.9 V^{1/2}}{H^{3/2}}$$

$$t_c = \frac{1}{K_2 - K_1} \ln \left\{ \frac{K_2}{K_1} \left(1 - \frac{Do(K_2 - K_1)}{K_1 Lo} \right) \right\}$$

End of Exam - Good luck

				This	exam r	neasure	s the fol	lowing IL	_Os				
Question Number	Q1	Q2-a	Q2-b	Q3-a	Q4-a	Q2	Q3-b	Q4-a		Q2	Q3-b	Q4-b	
	al-l	a1-2	al-l	a1-2	a1-2	b2-1	b2-1	b2-1		c1-1	cl-l	c1-1	
Skills	Know	ledge &	Unders	tanding	Skills	Intellectual Skills			Professional Skills				

