fo

 $j$$\cdots, \beta+\cdots$

بسم الله اللرحمن الرحيم

Menoufia University
Faculty of Engineering, Shebin El-Kom
Mechanical Power Department
First Semester Examination, 2013-2014
Date of Exam: Sunday 5/1/2014

Subject: Electrical Engineering
Code: ELE117
Year: First Year MPD
Time Allowed: 3 hours
Total Marks: 60 marks

Answer the following questions, each has the same marks:
Question 1: Six similar batteries, each has 24 V and 0.6Ω internal resistance are connected as: 1-series, 2-parallel, 3-matrix (2×3) to a load resistance. For each case at maximum power transfer Find : the load resistance and the maximum power transfer.

Question: An industrial process required lifting a $10 \mathrm{~m}^{3}$ of hot water / minute at $85 \mathrm{C}^{\circ}$ using a set of pump and electric motor. If the motor is fed from a 240 V dc supply at set efficiency is 85% calculate: 1 - the motor input power rating in Kw . $\quad 2$ - the motor current.

Question: A simple series control circuit consists of two similar nonlinear resistors. If the battery voltage is 18 V and each nonlinear resistor has the following characteristics:

Volt (V)	0	2	4	6	8	9
Current (A)	0	0,1	0.2	0.5	0.9	1.5

For each resistor find: the current in, the voltage across and the power loss.
Question: An iron ring has 2 m mean diameter, $20 \mathrm{Cm}^{2}$ cross-sectional area and 100000 relative permeability of the iron core. It wounded uniformly with 1000 turns to produce 0.003 Wb in the core. Calculate:- the required current in the winding if the ring has:

$$
\text { 1- no gap (i.e. } L_{g}=0.0 \text {), } \quad \text { 2- a gap with } L_{g}=2 C m, B_{g}=B i
$$

Question 5: A series R-L-C circuit operates at resonance. If $L=0.5 H, C=10 \mu F$ and $R=100 \Omega$ calculate: 1 - the supply frequency 2 -the supply current. . 3 -the coil voltage. 4 - the input power. 5 - the reactive power of the capacitor.

Questions: Resolve Question 5 if C is parallel with ($R-L$) to find: the supply current and power at 50 Hz .

Question 7: The reading of the ammeter in Fig. 1 is 8 A . While the total current, $1=15 \mathrm{~A}$ with 45° leading angle. If the coil has $X_{L}=10 \Omega, r=10 \Omega$, calculate: 1 - the supply voltage.
2 - the unknown branch currents. 3 - the values of R and C. 4- the equivalent impedance.

Fig. 1

تّم بحمد الله
Good luck

