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Absract~ In this paper., a eguation of motion describing

M. 72

the

flow through a packed bDed of spheres. contained in a flat-
walls passage, is suggested. To satisfy the fluid behaviour

within the bed a virtual kinematic wviscosity 1s defined as

a

function of both the porosity of the medium and the kinematic

viscosity of the fluid.

Numerical solutions of both the suggested model! and
the classical model are presented here. The produced velocity
profile according to the present model is compared with that

according to the classical model.

1. Introducticon

Several thermal engineering applications can benefit
from a better understanding of convective flow through porous
materials exemplified by geothermal systems, thermal
insulations, grain storage, solid matrix heat exchangers. oil

extraction., filtering devices and wvarious applications of
chemical engineering.
As mentioned in f[1], the first mathematical model

describing the flow through porous medium 1is after Darcy.
which states that the volumetrically avereged velocity in any
direction in space is proportional to the pressure gradient
in that direction. In spite of the simplicity of Darcy's
model. 1t has some important limitations. This model is not
sultable for describing fast flows and no-slip condition on

the solid boundary is not satisried by 1t. Moreover:
change of porosity near the solid boundaries is
considered according to Darcy's model.

Brinkman model takes into consideration the effect
vizcous force in the momentum eguation. As has bee
in [1-2]., The effects of inertia and variable p

'

-

(@]
introducsed to improve the model of Brinkman. Vortmeyer

the
not

of
n reported
YOsS1ty are

e [3)
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approximated the wvariable permeability by an exponential
function. Many investigators as in [4-8] used the modirfied
Brinkman model to study the convective flow through porous
medium.

In present proposed model, the momentum equation is
formulated in a manner sgimilar to that of simplified
Navier-Stokes equation of fully developed single component
flow. In this model a wvirtual kinematic viscosity is
assumed to satisfy the characteristics of flow through porous
media. A definition of wirtual kinematic viscosity as a
function of porosity and kinematic viscosity of the fluid is
proposed here. Numerical solutions of both modified Brinkman
and the present models are presented here for the flow
between two parallel flat plates. A comparison between the
results ¢of both models are made.

2. Modified Brinkman model and its solutian

rig.(l) shows schematic description of the flow and the
system of chosen coordinates. u denctes the wvelocity in
x=direction, T, is the shear stress at the walls. The passage

height 1s taken as ZH.

According to modified Brinkman model [2], the momentum
equation of the flow is given by
2
- igdp du _v = _ z .
5 dx + v ayz jou A ou 8] . (1)

where o, v and p are the density. kincmatic wviscosity of
fluid and the pressure; respectively. Both the permeability Xk
and the coefficient A are functions «f the s=phere diameter
and the matrix porosity as follows:

ko= —defo__ A o= 178 o-md) . (2-a)
175 (1-¢) ¢ d

whoare d 1s the diameter of the sphere and ¢ is the porosity
of the medium. The porosity is defined as ;

— xz y/d

@ = [ 1 + x‘ e i . (2-b)

o0
where . ,xiand hz are constants, their values depending on

the diameter of the sphere.

Equation (1). the govering equation. has the following

boundary conditions:

u =20 at y = 0 . (3-a)
du - _
kvl W] at Y H . {3-bi

. N . . ke d -
Defining the dimensionless wvarilables u and vy asz:
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ut o= S . y = E . (4)

yields to the dimensionless form of the governing equation as:

- «Q dz u.
u + C u =B C + (C -—= . {53
1 2 2z

with the boundary conditions

L4 L]

u =0 at y =20 .

- N (6)
U . g at y" =1 ,
dy

where C*, Cz and B are defined as:

d . d @
C = —0o=—e— ——= L= =S . (7-a)
.. gp H_ -
B - dx 2 ’ (7-p)
F=2 %

The governing equation and its Dboundary conditions are
solved,numerically, by the finite difference technique.
Figs. (2-3) show the effect of step size ratio and the total
number of nodes on the accuracy of the solution. The details
of the adapred finite difference technique are presented in
the appendix.

3. Present model and it= solution

From the peoint of view of the classical fluid mechanics,
the acting forces on a fully developed fliow, 1n present case,
can be restricted to two main kinds of forces. namely.
friction forces and pressure forces. Appling this concept to
the present problem, the momentum equaticn c¢an be written as
follows;

_ildp o dz _

> dy 0 . (8}
where < is the shear stress defined as T = v §$ . v is a
virtual kinematic viscosity. Comparing equation (1) and (8},
it is ciear that v is no longer ~r.atant., and must
be dependent on the kind of fluid ar:i on 2 porous medium

characteristics: as well.

Introducing the definition of T in equaz:.:n (8}, the
momentum equation can be written as;

l1dp  d  pdu ., _
o dx " dy{ ¥ dy ) o ()
with the boundary conditions:

74
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u =20 at y =8

(10}
du -
d_}_/ 0 at y = H

Accordjing to, the definition of the dimensionless
variables u and y l(eqn. (4)!., one can put egns. (9-10) in
dimensionless form as;

=l dy >4
w0 at Y* =0
(12)
£ ]
du_ . o at  y" =1

Equation (11) can be written in simpler form as;

Ed
B+ G- (Ldu_, g , (13)

Ed =z .

dy dy

where B is the dimensionless pressure gradient defined as:

=]

_.4p _
oz ds canstant.

8. H

£ is the reciprgcal of dimensionless virtual kinematic
viscosity ( e = v/w ).

Integration of egn.(13) followed Dby introducing the
boundary conditions gives:

-
B (1 -y = fdu , (14)

= -

dy
with the boundary condition:
Ut =0 at ¥y =0 . (1%

Eguations (14-13) represent the proposed momentum
equation in case of fully developed flow through saturated
packed porous medium, The dimensionless virtual kinematic
viscosity is determined using eqn.(14) together with the
available data from the previous studies. Knowing the formula
defining €; one can solve momentum egn. (14}, numsrically. by
Runge—-Kutta method.

4. Results

To determine the proper definition of the reciprocal of

dimensionless virtual kggematéc viscosity (£). some formulas
in the form of &£ = a o - P are tested as 1indicated in
fig.(4).

The coefficient ¢ 15 taken as 4.5 and 5. The ceoefficisnts a
and b are determined by the best fit of the wvalues
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obtained by subgtitution of the awvailable data from the
previous work in eqn.(14). Fig.(3) shows a comparison between
the results obtained by the present model and those obtained
by the modified Brinkman model. It is clear from this figure.
that £ can be fairiy defined as:

£ = 7.3631 x 10 expl 12.2874 ¢) — ¢,

for case of 4 = 0.1 and d = 3 mm. Fig.(6) shows the effect
of the value of pressure gradient (B) on the velocity
profile obtained by both the modified Brinkman mode! and the
present model .

5. Conclusion

The proposed model presented here gives a model simple
in appearance and application. Moreover, it overcomes the
paradox arises in Darcy’'s model and its improvements due to
the presence of physically unexplained terms in these models.
.In spite of the advantages of the present model: the
definition of the virtual kinematic wviscosity still needs
more studies.

6. Appendix

According to the finitg difference technigue., the first
and second derivative of u at gereral position (1) can be
approximated by

- E}
[ * ui.& r u‘.—
Qg: ), o= -siioao-iZ L ) (1A-a)
day {(1-r) h
z = 8 u —(1+3) u. + u_
Q-gg ) - 3.1 il . (1A-b}
dy D.5(i+r) h

where i dencotes the node number, » is the ratio between two
successive step sizes and 2 is the reciprocal of ». The step
size 1s taken variable because of the rapid. change of the
velocity near the wall and thus it is suitable to take the

value of it near the wall (y =0) very small. compared with
that far from it, to ensure good prediction of wvelocity
through ocut the flow field. Now if h denotes the initial

valtue of the step size (h), accordingly the step size valus
at any position (n) can be expressed as:
-2

h =y h  where h = ——t e
n 2 2 554

where j 1s the total number of nodes.

Substitution of equation (1A-b) in egn. (3) yields to:

- -
a u. + b u +c u
. L) L9 LY L

-
+d =0 . ( 2ZA)
(R § 1Y
where a = (C, 3
. 2
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bl_ =T CZ (ﬁ+1) - 0\. - 0\. CJ. Ll: '
c, = C2 . (33)
<:1.L = o B C, .
.'::r_L = 0.5 {(¥y+1) hi.
Equatien (2A) represents a set of , sipultaneous linear
algebric sequations with (j—2) unkowns (u, Ju = =- - -, uj_i).
This equation can be written in detail for i = 2,3.4,~———. | j-1
as;
- - - :
a, u, + b,u, +c, u + d, = ¢ for i = 2 .
a. u +Db U +c o u +d =0 for i = 3 .
a -+ a a 2 a8
g PRI e _
a_ u + b u + ¢ u +d =0 - for 1 = n
[s] n+d 2] ™ L] Lttt § (gl
..... G g e )
a _ u. + b __u +¢ u, +d. =0 for 3 = j-1
1 J i -1 1t -2 -1

————————— - (43)

Equations (3A) of the type known as three diagonal
matrix. which can be written such that; each value of U, can

B - o
be expressed as a functien of u at the next position (u* ).
From equations (4A):

=
u - & u + v
Z 2 3 2
- E
U =2 u + Vv ,
9 3 -+ 3
- -
uo=z U + v , (SA)
[a] ™ i+l [a]
- »
u =z u. + v .
=1 -3 ] -1
where:
a d
z M ——E W - I— _E
2 b 2 b
z z
W -+
. - a, > Ei__z d
a ¥ ¢z L s  C = !
bS CS 22 2 2
a c, o v._, * dn
sl ™ -
B e e aT i, v W e e 8
Zn b +c_z © Vn b+ ¢ z (6A)
m 2] =1 ™ " =41
3 oy v + d
> N hall SR . .. S S = - [
o ™ =g % o . iz + o
I DJ-LT C_;-l. "’j—z et bj‘-l cj‘j. ‘_'j-Z
According to the boundary condition at thg centep of the
passage (n=j}) eqn(6), one can. fairly. put uJ -y, and

hence:
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W
o ——2h . (7R)

b = ; -
Knowing the value of u.e. one can obtain, in recursive
-

- - E
manner, the values of u. _. u. _. ...... u L. u and u
i -2 " a 2

7. Nomenclature

a, bv c%& cl.L the coefficients of the difference eqn. (4A)

B dimensionless pressure gradient. defined by eqn. (7}

2H the passage height

D pressure

u, velocity component in x—direction

u dimensioniess velocity in x—direction. u/wH

v,z coefficients defined by eqns. (6A)

X co—ordinate along the lower wall of the passage

Y. co—ordinate normal to the lower wall of the passage
Y dimensionless co-ordinate. y/H -

£ reciprocal of the virtual kinematic viscosity, »/v

@ porosity of the medium, defined by egn. (Z-c)

4 the ratic between two successive step sizes

v kinematic viscosity of the fluid

v virtual kinematic viscosity, defined in egn. (14}

o density of the fluid

ke shear stress. v = v du/dy

T shear stress at the wall

[ 4
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Fig.{4) Schematic description of the f£iow thrgugh a passaqge
filled with fluid saturated porous medium
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Fig.(2) The effact of the step size rotio (7) on the
dimensionless velocity profile.
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Fig.(3) The effect of the number of nodes used in
numerical colculations.
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Fig.(4) The dimensianless virtual kinematic viscosiky
(& = ae” —¢° ) ogainst the dimensionless

distance y=
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according to Modified Brinkman Model
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Fig.(8) The dimensionless velocity profile (us versus y*)
occording to darcy madel compoared with that obtained
using the proposed formulgs of dimensionless virtual
kinematic viscocity shown n fig.(4)

Modified Brinkman Model

— — = — The present model
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Fig.(B) Velocity profile across the passoge at different
values of dimensionless pressure gradient (B).



