Mansoura University
Faculty of Engineering
Department of Electronics and
Communications Engineering

1st Year Electronics

First Semester (Final Exam.)

Exam Time: 3 Hours

Subject: Solid State Electronics

Course code: COM 9112

Exam Date: 1-1-2013

Attempt all questions. Assume any missed data. Full mark is 100

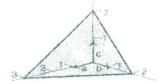
Q.1.a) State Bohr's postulates for the hydrogen atom. Use these postulates to derive expressions for the orbit *radius* and orbit *energy*.

- Sketch the energy level diagram and show Lyman, Balmer, and Paschen series on the diagram.
- What is the maximum photon frequency in Balmer series?

[10 Marks]

- Q.1.b) Write down the electronic configuration of iron. Can you guess why iron has magnetic properties? Give two examples for other elements with magnetic properties. [5 Marks]
- Q.1.c) The spectral density of the sun peaks at a wavelength of 900 nm. If the sun behaves as a black body, what is the temperature of the sun?

 [5 Marks]
- Q.2.a) X-rays of wavelength 8 pm are scattered from a target. Find:
 - The wavelength of the x-rays scattered through 45°
 - The maximum wavelength present in the scattered rays
 - The maximum kinetic energy of the recoiling electrons


[5 Marks]

- Q.2.b) State the wave equation. Write down the 3-dimensional time-independent Schrödinger equation. Verify that the one-dimensional time-dependent Schrödinger equation is a solution of the wave equation.

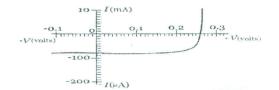
 [5 Marks]
- Q.2.c) Compare between each pair of the following:

[5 Marks]

- Insulators and semiconductors (using band theory of solids)
- FCC lattice and BCC lattice
- Q.2.d) Define Miller indices. The shown figure represents a part of a plane (the shaded triangle) which intersects the three axes x, y, z of a coordinate system. Find Miller indices for the shown plane. [5 Marks]

- Q.3.a) Define Fermi level. Use energy band diagrams to compare its position in both intrinsic and extrinsic semiconductors. [4 Marks]
- Q.3.b) "The Hall effect is a phenomenon which is exploited to measure mobility and majority carrier concentration". Justify this statement, using sketches and necessary equations. [6 Marks]

Q.3.c) Assuming all dopant atoms are ionized, determine the conductivity for a sample of germanium, (width=2 mm, length=0.5 cm, thickness=250 μm), doped with 5*10¹⁸ $atoms/cm^3$ of antimony. Find the percentage error when approximate relations are used.


 $(\mu_n = 3900cm^2V^{-1}s^{-1}, \quad \mu_p = 1900cm^2V^{-1}s^{-1}, \quad n_i = 2.5*10^{13}cm^{-3})$ [6 Marks]

- Q.3.d) Define the term "optical generation". Would photons of wavelength 1 μm be absorbed by silicon dioxide of bandgap 9 eV? [4 Marks]
- Q.4.a) Derive an expression for the contact potential of a pn junction in terms of electron concentration in n-side and p-side. [5 Marks]
- **Q.4.b)** An abrupt silicon pn⁺ junction 10^{-2} cm² in area has $N_a = 2*10^{14}$ cm⁻³ doping on the p-side. Calculate the junction capacitance with a forward bias of 0.4V. **[5 Marks]**
- Q.4.c) Using *sketches only*, compare between the distributions of charge, potential, and electric field for a symmetric p-n junction and a one-sided abrupt p⁺n junction. [5 Marks]
- Q.4.d) Starting with Fermi-Dirac distribution function, $f(E) = \frac{1}{1 + \exp[(E E_f)/kT]}$, sketch the variation of f(E) versus E, for T=0° K, 500° K, 1000° K, E_f =1 eV [5 Marks]
- Q.5.a) Using E-k diagram, compare briefly between direct band-gap and indirect band-gap semiconductors. Give examples for each. [5 Marks]
- Q.5.b) Sketch a simple half-wave rectifier circuit. Apply a sinusoidal signal $V = 5\sin(100\pi t)$ to the input. Sketch the output waveform. [5 Marks]
- Q.5.c) Design a photodetector circuit to detect infra-red (1 μm) upwards. Sketch the V-l characteristics of the photodetector. [5 Marks]
- Q.5.d) Using sketches, compare between LED and LASER diodes.

[5 Marks]

Q.5.e) For a solar cell, what do the terms "fill factor & efficiency" refer to?

Calculate the fill factor for the solar cell characteristics shown in figure? [5 Marks]

You may need some or all of the following constants:

Electron mass = 9.1*10 ⁻³¹ Kg	Avogadro's number = 6.023*10 ²³ atoms/mole
Electron charge = 1.6*10 ⁻¹⁹ C	Speed of light = 3*10 ⁸ m/s
Planck's constant = 6.625*10 ⁻³⁴ J.s.	Boltzman's Constant = 1.38*10 ⁻²³ J/K°

My best wishes to all of you!

Assis. Prof. Hossam El-Din Moustafa