ON THE PSEUDOMETRICS WITH HEINE-BOREL PROPERTY

H. ATTIA

Department of Mathematics, Faculty of Science,

Menoufia University, Sheben El- Koom, Egypt.

ABSTRACT

The concept of HB-Pseudometric is introduced and investigated for arbitrary Tychonoff spaces. We prove that a space has HB-Pseudometric iff it is locally compact and σ-compact. Moreover, we study the WHB-Pseudometric and investigate some of their properties.

INTRODUCTION

The concept of HB-metric is introduced in [2] and investigated in [4]. In this paper we shall introduce HB-Pseudometric on arbitrary Tychonoff space. A closed mopping $f: X X \longrightarrow Y$ is perfect if $f^{-1}(y)$ is compact for every $y \in Y$. A space which can be represented as a countable union of compact (resp. countably compact) subspaces is called σ - compact (resp. σ - countably compact). If the space X is locally compact and σ - compact then X can be represented as the union

On the pseudometirc

of an increasing sequence of open sets U_n such that $c1_XU_n$ is compact and $c1_XU_n \subseteq U_{n+1}$ for every $n \in N$ (see [1] or [3]). The symbol $c1_XU$ denotes the closure of a set U in X. A space X is called Pseudocompact if every continuous real - valued function defined on X is bounded. A space X is called locally countably compact if every point of X has a neighborhood U such that $c1_XU$ is countably compact [1]

HB-PSEUDOMETRICS

A Pseudometric d on a topological space X is continuous if for every $x \in X$ and number r > 0 the set $S(x,r) = \{y \in Y : d(x,y) < r\}$ is open in X. a set $B \in X$ is bounded relative to a Pseudometric d if there exist a point $x \in X$ and a number r > 0 such that $B \in S(x,r)$ and this is equivalent to sup $\{d(x,y) : x,y \in B\} < \infty$. **Definition 1.1.** A Pseudometric d on X is said to be HB-Pseudometrics (or it satisfies the Heine-Borel property) if it satisfies the following conditions:

- 1. The Pseudometric d is continuous on X.
- 2. If the set $B \subset X$ is bonded by the Pseudometric d, then $c1_{XB}$ is compact. Remark 1.2. Let d be a HB-Pseudometric on a space X. For every point $x \in X$ we put $H(x) = \{ y \in Y : d(x,y) = 0 \}$. Such a definition decompose the set X into compact subset $\{H(x):x \in X\}$. Let $X/d = \{H(x): x \in X\}$ and $\pi : X \longrightarrow X/d$ where $\pi^{-1}(\pi(x)) = H(x)$. On X/d consider the following metric d define as follows: d (H(x), H(y)) = d(x,y) for every $x,y \in X$. then (X/d, d) is a metric space and

clearly is continuous mapping. We shall prove that π is closed mapping. let $x_0 \in X$ and U be an open in X set such that $\pi^{-1}(\pi(x_0)) \subset U$. We shall prove that there exists r > 0 such that $S(x_0,r) \subset U$. Let us consider that $S(x_0,1/2n)\setminus U \not\equiv \emptyset$ for all $n \in N$. Let $x_n \in \{x_n : n \in N\} \subset S$ $(x_0,1)$ is closed, discrete and bounded. Since d is HB-Pseudometric, then the set $L = c1_X L$ is compact and thus is countably compact. Then $S(x_0, 1/2n) \setminus U = \emptyset$. Hence $S(x_0, 1/2n) \subset U$ for some $n \in N$. This shows that the mapping π is closed (see Theorem 1.4.13 in [1]). The following theorem is a fundamental result,

Theorem 1.3. If X is a Hausdoroff space, then the following statements are equivalent:

- 1. The space X is locally compact and σ -compact.
- 2. On X there exists HB-Pseudometric.

Proof. First we shall prove that $1. \longrightarrow 2$.

Suppose X is locally compact and σ - compact. If X is compact, then we can define d(x,y)=0 for every $x,y\in X$. It is obvious that d is HB-Pseudometric on X. Suppose X is not compact. Then there exists a sequence $\{U_n:n\in N\}$ of open in X sets such that $c1_XU_n$ is compact and $c1_XU_n\subset U_{n+1}$ for every $n\in N$. By the normality of X we construct continuous functions $f_n:X\longrightarrow [0,1],\ n\in N$ such that $U_n\subset f_n^{-1}(0)$ and $X_nU_{n+1}\subset f_n^{-1}(1)$. put $d(x,y)=\{\sum \left|f_n(x)-f_n(y)\right|:n\in N\}$. If $x,y\in X$, then there exists $n\in N$ such that $x,y\in U_n$. Then $f_1(x)=f_1(y)=0$

for every $i \ge n$ and $d(x,y) = \sum \left\{ \left| f_i(x) - f_i(x_0) \right| : i \le n \right\}$ defines a Pseudometric on X. we shall prove that d is HB- Pseudometric. Let x_0 be any point in X and r > 0 be any number. Then there exists $n \in N$ such that $x_0 \in U_n$. The function $g_n(x) \in \mathbb{R}$ of \mathbb{R} is continuous on X and $x_0 \in \mathbb{R}$ in \mathbb{R} of \mathbb{R} of \mathbb{R} is continuous Pseudometric on \mathbb{R} . Now let $a \in U_0$. Then $S(x_0, r)$ is open in X. Then d is continuous Pseudometric on X. Now let $a \in U_0$. Then $S(a,n) \subset U_n$. If the set H is bounded, then $H \subset S(a,n)$ for some $n \in \mathbb{R}$. Then $c \in \mathbb{R}$ and $c \in \mathbb{R}$ is compact. Hence d is HB-Pseudometric. Conversely, we shall prove that $a \in \mathbb{R}$ is compact.

Suppose that d is HB-Pesudometric on X. Then the set S(x,1) is open in X and the set $c1_XS(x,1)$ is compact. Then the space X is locally compact. Consider the space (X/d,d) define in remark 1.2 and let $x_0 \in X$ be any point. Then for every point $x \in c1_XS(x_0,1)$ we have $\pi^{-1}(\pi(x)) = H(x) \subset c1_XS(x_0,1)$. This shows that the mapping π is perfect. Since every metric space is paracompact, then X is paracompact also. Then $X = \bigcup \{W_i : i \in I \}$, where the sets W_i are open, compact and $W_i \cap W_j = \emptyset$ for $i \neq j$ (see Th.5.1.27 in[1]). We shall prove that the set I is countable. Suppose that the set I is not countable. For every $i \in I$ let $x_i \in \pi^{-1}(W_i)$. Then $d(x_i, x_j) > 0$ for every $i, j \in I$ and $i \neq j$. Let $i_0 \in I$ and $I_n = \{i \in I : n \ge d(x_i, x_i) \ge 1/n\}$. It is clear that $I = \{i_0\} \cup \bigcup \{I_n : n \in N\}$. Then there exists $n \in N$ such that the set I_n is not countable. The set $H = \{x_i : i \in I_n\}$ is closed, bounded infinite and discrete. Then $c1_XH = H$ is not compact. This

contradicts that d is HB- Pesudometric. Then I must be countable. This proves that the space X is σ -compact and the theorem is proved.

From the properties of perfect mappings we deduce that the space X/d is locally compact and σ -compact.

The following theorem is given in [4].

Theorem 1.4 A metric space (X,d) has a Heine-Borel metric which is locally identical to d if it is complete, σ -compact and locally compact.By theorem 1.3 and theorem 1.4 we have

Corollary 1.5. A Hausdoroff space X has a HB- Pesudometric iff there exists a perfect mapping from X onto a space with HB- metric.

Proof. Follows directly from theorem 1.3, 1.4 the theorem 3.7.21 and 3.7.24 given in [1].

Theorem 1.6. If d_1 is a continuous Pesudometric on X and d_2 is HB-Pesudometric on X then $d = d_1 + d_2$ is HB-Pesudometric. If d_2 is a metric, then d is metric.

Proof. If the set $L \subset X$ is bounded relative to the Pesudometric d then it is bounded relative to the Pesudometric d_1 and d_2 .

Definition 1.7. We say that two Pseudometrics d and d' on X are locally identifical if every point $x \in X$ has a nieghbourhood O_x

Example 2.1 Let X be a countably compact space. Then the function d(X,Y) = 0 for every X, $Y \in X$

is WHB-pseudometric. If X is not compact, then d is not HB-pseudometric.

On the pseudometirc

Theorem 2.2 Let d be a continuous pseudometric on X. Then the following are equivalent

- 1- For every bounded set $L \subset X$, the set cl_XL
- is countably compact.
- 2- For every bounded set $L \subset X$, the set cl_XL

is pseudocompact.

Proof: Since every Tychonoff countably compact space is pseudocompact (Theorem 3.10-20 in [3]), then $1.\rightarrow 2$. we shall prove that $2.\rightarrow 1$. Let $L\subset X$ be a bounded set and the set $H=\operatorname{cl}_X L$ is not countably compact. Then in H there exists a countable discrete subset $E=\{X_n:n\in N\}$. The set E is a closed subspace of the space H. Then by Tietze-Urysohn Theorem there exists a continuous function $f:H\longrightarrow R$ such that $f(X_n)=n$ for n=1, $2,\ldots$ But f is not bounce. Then H is not pseudocompact. The theorem proved.

A closed mapping $f: X \to Y$ is called quasiperfect if $f^{-1}(Y)$ is countably compact for every $Y \in Y$.

Theorem 2.3 Let d be a WHB-pesudometric on the space X, then the following statements hold:

- 1- The mapping π is quasi-perfect.
- 2- d* is HB-metric onto X/d.
- 3- The space X is locally countably compact and on the pseudometrics. σ -countably compact.

Proof: Statement 1. is obvious from Remark 1.2 and that the set $\pi^{-1}(\pi(X))$ 0 { Y $\in X : d(X,Y) = 0$ } is countably compact. The statement 2. follows from 1. and the fact that every countably compact paracompact space is compact (see Theorem 5-1.20 in [3]).

Statement 3. follows directly from 1.

Corollary 2.4. A space X has a WHB-pseudometric if and only if there exists a quasi-perfect mapping onto a space with HB-metric.

Theorem 2.5. If d_1 is continuous pseudometric on X and d_2 is WHB-pseudometric on X, then $d_1 + d_2$ is WHB-pseudometric on X.

COMPLETION OF PSEUDOMETRIC

In this section all spaces are considered to be Tychonoff unless stated otherwise. Let d be a continuous pseudometric on the space X. Consider a maximal set $X^d \supset X$ of the stone-Cech compactification βX of the space X. The continuous pseudometric $\overset{\sim}{d_T}s$ called the completion of the pseudometric d if d is the extension of d on X^d . If $X = X^d$, then the pseudometric d is called complete.

Lemma: 3.1 The set X^d exists and is unique.

Proof: Let $\pi: X \to X/d = Y$ be the continuous projection from the space defined in Remark 1.2. By Hausdoroff's Theorem the metric d^* on Y is extended to a complete metric d on $Y \supset Y$, where Y is dense in Y. Let $\beta \pi: \beta X: \longrightarrow \beta Y$ be a continuous extension of π , where βX and βY are the Stone-Cech compactifications

On the pseudometirc

of the spaces X and \widetilde{Y} respectively. Let $X^d = (\beta \pi)^{-1}(\widetilde{Y})$ and $d(x,y) = \widetilde{d}(\beta \pi(x))$, $\beta \pi(y)$ for every $x,y \in X^d$. The uniqueness and maximality of \widetilde{Y} implies that X^d is unique and is maximal. A metric d on a space X is called K-metric if the projection $\pi: X \to X/d$ is perfect.

Since the projection $\tilde{\pi}: X^d \to X^d/\tilde{d}$ is perfect, the following theorem is true.

Theorem 3.2 Every continuous pseudometric is extended to a complete K-metric.

Theorem 3.3 The completion of WHB-pseudometric is HB-pseudometric and any HB-pseudometric is complete.

Proof: Let d be a WHB-pseudometric on the space X.Then by theorem 2.3 the mapping $\pi: X \to X/d$ is quasi-perfect and \widetilde{d} is complete HB-metric on Y = X/d. Hence $\widetilde{\pi}$ maps perfectly X^d onto Y, thus the mapping $\widetilde{\pi}: X^d \to Y$ is perfect from X^d onto Y. Consequently $\widetilde{\pi}: X^d \to X^d/\widetilde{d} = \widetilde{Y}$ is a perfect mapping and \widetilde{d} is HB-pseudometric onto \widetilde{d} .

To prove the second part of the theorem let d be a HB-pseudometric on X. Let $a \in X^d \setminus X$ be any point. Consider the sequence $L = \{x_n : n \in N\} \subset X$ be such that $\widetilde{d}(a,x_n) < 2^{-n}$. The set L is bounded and closed in X. Then L is compact subset. Since $\{x \in X : \widetilde{d}(a,x) = 0\} \cap \operatorname{cl}_X d L \neq \emptyset$, then $\operatorname{cl}_X d L \neq L$. This implies that $X = X^d$. Then HB-pseudometrics are complete.

Corollary 3.3 All HB-metrics are complete.

REFERENCES

- 1. R. Engelking. General topology. Polish scientific publishers, Warsaw, 1977.
- 2. H. E. Vaughan. On locally compact metrizable spaces. Bull. Amer. Math. Soc., 43(1937), 532-535.
- 3. S. Willard. General topology. Addison Wesley, Reading, Mass, 1970.
- 4. R. Williamson and L. Janos. Constructing metrics. Proc. Amer. Math. Soc., 100 (No.3) (1987), 567-573.