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ABSTRACT
The concept of HB-Pseudometric is introduced and investigated for arbitrary
Tychonoff spaces. We prove that a space has HB-Pseudometric iff it is locally

compact and 6-compact. Moreover, we study the WHB-Pseudometric and investigate

some of their properties.

INTRODUCTION
The concept of HB-metric is introduced in [2] and investigated in [4]. In this
paper we shall introduce HB-Pseudometric on arbitrary Tychonoff space. A closed
mopping f: X X—— Y is perfect if fﬂl(y) is compact for every y € Y. A space
which can be represented as a countable union of compact ( resp. counfably
compact) subspaces is called o- compact ( resp. 6- countably compact). If the

space X is locally compact and ¢- compact then X can be represented as the union
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of an increasing sequence of open sets U, such that c1 XUn is compact and c1 XUns
Un+1 for every n € N (see [1] or [3] ). The symbol c1xU denotes the closure of a
set U in X. A space X is called Pseudocompact if every continuous real - valued

function defined on X is bounded. A space X is called locally countably compact

if every point of X has a neighborhood U such that ci1xU is countably compact [1]

HB-PSEUDOMETRICS
A Pseudometric d on a topological space X is continuous if for every x € X and
number r > 0O the set S(x7) = {y e Y : dx,y) <r}isopenin X aset B ¢ X is
bounded relative to a Pseudometric d if there exist a point x € X and a number
>0 such that B < S(x,r) and this is equivalent to sup [d0Qxy) : X,y € B } < .
Definition 1.1. A Pseudometric @ on X is said to be HB-Pseudometrics (or it
satisfies the Heine- Borel property) if it satisfies the following conditions:
1. The Pseudometric d is continuocus on X.
2. If the set B < X is bonded by the Pseudometric d, then c1xB js compact.
Remark 1.2. Let d be a HB-Pseudometric on a space X. For every point x € X we

put Hx) = { y € Y : d)x,y) = 0 }. Such a definition decompose the set X into

compact subset{H(x):x € X}. Let X/d = [H(x): x€ X} and n X—X/d where
_ *
T l(1t(x) = H(x). On X/d consider the following metric d define as follows:

- ,
d (H(x), H(y)) = d(x,y) for every x,y € X. then (X/d, dx) is a metric space and
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clearly is continuous mapping. We shall prove that & is-closed mapping. let XOEX
and U be an open in X set such that n'l(n(xo)) ¢ U. We shall prove that there
exists 1 > O such that S(xot) < U. Let us consider that S(x0,1/2n)\U£¢) for all
n € N. Let xne{xn:neN} cS (xo,l) is closed, discrete and bounded. Since d is
HB-Pseudometric, then the set L = clxL is compact and thus is countably compact.
Then S(x o 1/2n) \U = ¢. Hence S(xo, 1/2n) < U for some n € N. This shows that
the mapping 7 is closed ( see Theorem 1.4.13 in [1]). The following theorem is a
fundamental result,

Theorem 1.3. If X is a Hausdoroff space, then the following statements are
equivalent :

1. The space X is locally compact and o-compact.

2. On X there exists HB-Pseudometric .

Proof. First we shall prove that 1. — 2.

Suppose X is locally compact and o- compact. If X is compact , then we can
define d(x,y) = 0 for every x, y € X. It is obvious that d is HB-Pseudometric
on X. Suppose X is not compact. Then there exists a sequence {Un :neN)of

open in X sets such that ¢l XUn is compact and c1 XUn o Un+ 1 for every n € N. By

the normality of X we construct continuous functions fn :X—[01],neN

fn(x) - fn(y) :neN}

such that U_c £ (0) and X\U__ _ < £ (D). put d(x,y) =(T.
n p n+l g

If x,y € X, then there exisis n € N such that X,y € Un' Then fl.(x)= fi(y) =0
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for every i = n and d(x,y) = ¥ { fi(x) - fi(xo) : =0 } defines a Pseudometric

on X . we shall prove that d is HB- Pseudometric. Let X, be any point in X and

r>0 be any number. Then there exists n € N such that X, € Un' The function gn(x)

0 { fi(x) - fl.(xo) : 1 = n} is continuous on X and X, & gr_ll[o’r] A Un c

S(xo,r). Thus S(xo, 1) is open in X. Then d is continuous Pseudometric on X. Now

let ae UO. Then S(an) c Un. If the set H is bounded, then H < S(a;n) for some n

€ N . Then clxH ¢ chUn and clxH is compact. Hence d is HB-Pseudometric.

Conversely, we shall prove that 27— 1.

Suppose that d is HB-Pesudometric on X. Then the set S(x,1) is open in X and the
set clxS(x,1) is compact. Then the space X is locally compact. Consider the
space (X/d,d*) define in remark 1.2 and let X € X be any point. Then for every
point xe clyxS( O,1) we have n'l(n(x)) = H(x) ¢ chS(x O,1). This shows that *he
mapping m is perfect. Since every metric space is paracompact, then X is
paracompact also. Then X = u {Wi tiel }, where the sets Wi are open, compact
and Wir\ Wj = ¢ for i#] (see Th.5.1.27 in[1]). We shall prove that the set I is
countable. Suppose that the set I is not countable. For every i € I let x.€
n"(wi). Then d(x;x) > Ofor every ij € I and i#). Letig e Tand I = (i € I
:n zd(xio,xl.) zl/m}. It is clear that I = {iO) v In :n € N}. Then there

exists n € N such that the set Inis not countable. The set H = {xi = In } is

closed, bounded infinite and discrete. Then clxH = H is not compact. This
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contradicts that d is HB- Pesudometric. Then I must be countable. This proves
that the space X is g-compact and the theorem is proved.

From the properties of perfect mappings we deduce that the space X/d is locally
compact and G-compact.

The following theorem is given in [4].

Theorem 1.4 A metric space (X,d) has a Heine-Borel metric which is locally
identical to d if it is complete, o-compact and locally compact.By theorem 1.3
and theorem 1.4 we have

Corollary 1.5. A Hausdoroff space X has a HB- Pesudometric iff there exists a
perfect mapping from X onto a space with HB- metric.

Proof. Follows directly from theorem 1.3, 14 the theorem 3.7.21 and 3.7.24
given in [1}.

Theorem 1.6, If d1 is a continuous Pesudometric on X and d2 is HB- Pesudometric
on X then d = d1 +d2 is HB- Pesudometric. If d2 is a metric, then d is metric.

Proof. If the set L ¢ X is bounded relative to the Pesudometric d then it is

bounded relative to the Pesudometric dl and d2.

Definition 1.7. We say that two Psendometrics d and d on X are locally

identifcal if every point x € X has a nieghbourhood OX
Example 2.1 Let X be a countably compact space. Then the function

d(X,Y) = 0 for every X, Y € X

is WHB-pseudometric. If X is not compact, then d is not HB-pseudometric.
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Theorem 2.2 Let d be a continuous pseudometric on X. Then the following are
equivalent

1- For every bounded set L ¢ X, the set clxL

is countably compact.

2- For every bounded set L ¢ X, the set clxL

is pseudocompact.

Proof: Since every Tychonoff countably compact space is pseudocompact (Theorem
3.10-20 in [3]), then 1.— 2. we shall prove that 2. —l. Let L ¢ X be a bounded
set and the set H = clxL is not countably compact. Then in H there exists a
countable discrete subset E = {X, : n € NJ}. The set E is a closed subspace of
the space H. Then by Tietze-Urysohn Theorem there exists a continuous function
fiH —> R such that f(X;) = nforn =1, 2, .. . But f is not bounce. Then H
is not pseudocompact. The theorem proved.

A closed mapping f: X — Y is called quasiperfect if f_l(Y) is countably compact
for every Y € Y.

Theorem 2.3 Let d be a WHB-pesudometric on the space X, then the following
statements hold:

1- The mapping m is quasi-perfect.

2- d* is HB-metric onto X/d.

3- The space X is locally countably compact

and on the pseudometrics. o-countably compact.



Proof: Statement 1. is obvious from Remark 1.2 and that the set mlm(X)) 0 { Y
e X : &(X,Y) = 0} is countably compact. The statement 2. follows from 1. and the
fact that every countably compact paracompact space is compact (see Theorem 5-
1.20 in [3]).

Statement 3. follows directly from 1.

Corollary 2.4. A space X has a WHB-pseudometric if and only if there exists a
quasi-perfect mapping onto a space with HB-metric.

Theorem 2.5. If d; is continuous pseudometric on X and d, is WHB-pseudometric on

X, then d; + d, is WHB-pseudometric on X.

COMPLETION OF PSEUDOMETRIC

In this section all spaces are considered to be Tychonoff unless stated
otherwise. Let d be a continuous pseudometric on the space X. Consider a maximal
set X4 > X of the stone-Cech compactification BX of the space X. The continuous
pseudometric ETS called the completion of the pseudometric d if d is the
extension of d on X¢. If X = X9, then the pseudometric d is called complete.
Lemma: 3.1 The set X4 exists and is unique.

Proof: Let © : X — X/d = Y be the continuous projection from the space defined
in Remark 1.2. By Hausdoroff’s Theorem the metric a* on Y is extended to a
complete metric 5 on ;{ > Y, where Y is dense in Y. Let fr: X :— [3;’ be a

continuous extension of ©t , where BX and BY are the Stone-Cech compactifications
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of the spaces X and S~(' respectively. Let X4 = (Bn)'l&') and d(xy) = E Br(x),
Bre(y)) for every x,y € X4 The uniqueness and maximality of Y implies that X4
is unique and is maximal. A metric d on a space X is called K-metric if the
projection 7 : X — X/d is perfect.

Since the projection ;z x4 xd/E is perfect, the following theorem is true.
Theorem 3.2 Every continuous pseudometric is extended to a complete K-
metric.

Theorem 3.3 The completion of WHB-pseudometric is HB-pseudometric and any
HB-pseudometric is complete.

Proof: Let d be a WHB-pseudometric on the space X.Then by theorem 2.3 the
mapping = : X — X/d is quasi-perfect and 5 is complete HB-metric on Y = X/d.
Hence ; maps perfectly x% onto Y, thus the mapping ; XAy s perfect from
Xd onto Y. Consequently 7; : Xd—> xd/é = §~( is a perfect mapping and E is HB-
pseudometric onto E

To prove the second part of the theorem let d be a HB-pseudometric on X. Let a €
x\X be any point. Consider the sequence L = { X 1n€ N}cX be such that
E(a,xn) < 2. The set L is bounded and closed in X. Then L is compact subset.
Since {xeX:d@x=0}n clyd L # §, then cldL#L. This implies that X =
X%, Then HB-pseudometrics are complete.

Corollary 3.3 All HB-metrics are complete.
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