icol 24 anis

Menoufia University
Faculty of Electronic Engineering
Industrial Elec. and Control Eng. Dept.
Mid-Term Exam, for 3rd year

Digital Control Systems (ACE323)

Time Allowed: 1 H

06 April 2019

Total marks: 20 marks

لدرجة : ـ	Make this case has not seen and support page this who was now too and and	القصل:	٦	W	Ķ

Answer the following two questions:-

1-a) Draw a block diagram for a general configuration of digital control system.

[4 marks]

2-b) Find the output C(z) for the cascade of the following two analog systems with a sampled unit ramp input, if the systems are separated by a sampler.

$$G_1(s) = \frac{1}{s}$$

$$G_1(s) = \frac{1}{s}$$
 $G_2(s) = \frac{10}{s+6}$

[4 marks]

1-b) Find the difference equation for the system shown in Fig. 1, where the input k = 2,3,... and the output $y(k) = \begin{cases} 2(k) - 2(0.5)^k, & k \ge 0 \\ 0, & k < 0 \end{cases}$ Assume all the initial conditions are equal zero.

Fig. 1

[6 marks]

2-a) Consider the following linear difference equation:

$$y(k+2) + 0.7 y(k+1) + 0.06 y(k) = u(k),$$
 for $k \ge 0$

where y(k) is the output with initial conditions y(0) = 0 and y(1) = 2 and where u(k) represents a unit impulse input.

- a) Determine the output y(k).
- b) Find the final value $y(\infty)$.

[6 marks]

2-a) Consider the following linear difference equation:

$$y(k+2) + 0.7 y(k+1) + 0.06 y(k) = u(k),$$
 for $k \ge 0$

where y(k) is the output with initial conditions y(0) = 0 and y(1) = 2 and where u(k) represents a unit impulse input.

- a) Determine the output y(k).
- b) Find the final value $y(\infty)$.

[6 marks]