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Solution of Parabolic Navier-Stokes Equations for The
Entrance Region-Flow between Two Parallel Plates
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Abstract- The development of the flow fleld In the entrance
region is theoretlcally examlpned, for the case of flov
between two parallel flat plates. The flow fleld \is
described by the parabolic Navier-Stokes eguatlons./ Because
of the nature of these eguations; it 1s convenlent to solve
them by the application of the 1local slmllarlty solution

method. Accordlng to thls method, dlmenslonless form of
momentum equations are transferred to ordinary dlfferential
equatlions. These two modlfled eguatlons are so0lved
nuperically by Runge-Kutta method of ordinary differentlal

equations accompanled wlth shootling method of boundary value
problems.

The values of coefficient of friction are calculated at
different positions along the passage. also the veloclty
profile at any position, according to this approach, can be
obtalned. Three passages, ln thils work, are studied; with
Reynolds number ( based on the half of kthe height of the
passage} of 100,200 and 2300.

1. INTRODUCTION

A complete knowvledge of the mechanlsm of the £flow of
fluids 1n pipes and channels 1s baslc to the wunderstanding
0of heat transfer processea. The developing of velocity
profile In the entrance reglon of ducts s of a great

importance ln case of comblped entrance reglon laminar
forced convectlon.

As surveyed by Kakac and Yener [2], different " methods
have been developed to solve the problem of 1laminar forced
convection in combined entrance region of a duct. These
methods are based on the hydrodynamic boundary layer



2 M.G.¥ASEL

approximation. Later, Wasel [4] made a Jlocal simllarlty
solution of laminar forced convection in entrance region for
tlov between two parallel plates. According to thls solution
the pressure variation along the duct is neglected. To take
the pressure varlations in consideration, the flow field is
described by parabolic Navler-Stokes eguations [11. Because
of the nature of parabollic Navler-Stokes eguatlons, the
solution at certain posltion along the passage 1s dependent
only on the boundary conditions of the problem and hence the
numerical solutlon can be carrled out In step by step
manner., The dimensionless form of the governing eguatlions
are solved by local simllarlty-method [3].

2. GOVERNING EQUATIONS

Consider the laminar flow between two parallel plates
as shown in Fig. (1). The uniform velocity of approach, the
veloclity at the axis of similarity, the pressure at 1inlet
sectlon and the distance between the two plates are denoted

by u,ou s Py and 2b, respectively. The x-component and

y-component of velocity are denoted as u and v,
respectively.

The flow field is described through three governing
partial differential equations; continuity eguation,
momentum equation in x-directlon and momentum eguation in
y-direction. They can be written in cartesian co-ordinate as

du | v

3% 5; =0 ’ (1)
2
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where o and ¢ are the denisty and the kinematic viscosity of
the fluid, which are assumed to be constant through out the
flow field. In the momentum equations the second derivative
with respect to x are neglected compared with that with
respect to y. The value of wvelocity at the axlis of
similarity [uox) at any valun of % must satisfy the

continulty eguation in integral form, which states :

-]
od wdy = u_b . (4)

(=]

Because of the flow is similar about the axis of the
passage, lt is enough to solve the governing equations of
the flow from one wall to the center of the passage,
moreover the flow along the axls of passage is assumed to be
potential flow and hence the relation between the velocity
and pressure there; 1s described by Bernoulli's equation as
follows



Mansoura Engineering Journal (MEJ} Vol. 16, No. 1, June 1991 M. 3

_________ = -___E__-;_ ; {5}

where p is the pressure at the center of the passage at
fal 3
general position X
Equations (1)-{3) are a set of partial differential

equations with the unkowns u, v and p. This set of equations
must satisfies the following boundary condlitlions

2
a=v=0 ; oo f arye0, (6-a)
U= u ; D =p at ¢y = b . t6-b)
DR O,
a aty
The boundary condition o) = p -=- iz obtalned by

ay ’y=a dyz
examining the second mementum eguation (3).

To express the governlng egquations 1in dJdimenslonless
form, new independent wvariables £, 1n are interiduced as

follows:

__l £ W _ o

£ = b Uo A ST ¢
Furthermore, a dimensionless stream function and a
dimensionless pressure are defined according o the

following relations

wix,y) = fue v x E(8,n) , {8~a;
- 2 .
(g, = { p=,» - Dc’ Y S oe e {8-D}

Where wix,y) ls the stream function, which is defined such
that it satisfies the Zontinuity 2quation (1) and P(¥,n}l is
the dimensionless pressure. Substitution af 2guations
{7y-(8) into equations (2)~{(3) 1leads +to the [olloving
dimensionless form -f momentum =2quations {where, the primes
denoting differenti tlon vwith respect to wnj

2 E" + £ EM" + P =0 ‘ {93
i : 3 ‘_2_ N v _l_ I )
2 £ + (f n y OE™ + (f n £y £
2 fz
- Re >- p' = 0 . {10}
b 7

Accordlng to the local similarity method (31, the
derivatives with respect to £ in equations {9)&{(1l0) are
neglected and ¥ 1s «c¢onsidered as a parameter In the
equations. Reb is the Reynolds number based on the half of

the passage height Reb=-j-—). The c¢contlnuity eguation;
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eqn (4) in dimenslonless form 13 as follows
b
oJ £ dn=m (11)

where ny, is the wvalue of 7 at the center of passage.

According to eguationa (5) and (7)-(8] the dimensionless

pressure at the center of the passage at any value of x ()
Is given by

P(E,m) = 3 [ 1- €71, (12)
vhere EL ls the derlvatlive of dlmensicnless stream fuhction

at the center of the passage.

Eliminating £"' from equatlcns (9),(10) yields to the
equation;

pro= £.E._X L ADR L T 2] . (13)

Equations (9) and (13) represent a system of ordinary
differential equations in £ and P as unknowns. Their
boundary conditicns can be deduced by examining egquations
{6) and (13) with aid of eguations (5)-(8) as follows:

"
£=f =0 , P' = ____5__; at n = 0 , {l4-a)
i Re  F
b
£ = ‘—‘ng , P=211 - £7% atwn=m. (l4-b)

3. NUMERICAL PROCEDURE

For certain value of passage height (2b); which means
certain value aof Reb, equatlons (9),{(13) and (14) are solved

for different values of the parameter ¥ and hence for

different values of N, ; vhere n,= % as it is shown in (7).

At every value of ¥ the set of equations is sclved by Runge-
Kutta numerical method of ordlnary differential equations
accompanied with shootlng method of boundary value problems.
To ensure the rapid convergence of solution, the calculation
procedure is carried out through two main steps. First, the
set of equatlons 1is solved for assumed £}, and second step is

to Justify this wvalue ¢to produce a velocity profile
satisfies the continulty eguation; egn (11). Table (1}
showes the values used in numerlcal present calculatiohs,

Knowing velaoclity £ield, the local coefficlent of
friction can be determlned accordlng to the following
definition

2
c, =T,/ pu . (15)



Mansoura €ngineering Journal {MEJ) Vol. 16, No. 1, June 1991 M. 5

where T, is the shear stress at the wall, whic ig Jdefined
by .
'rvzpug\f, }ym ) (16)

Introducling the dimensionless variables in eguations 15-16,
one obtains the Eollowing expression of local cgefficient of

friction
Cf /Rex = £"(F, 0 v . {173

where Re denotes the loczal Reynolds numbazr ( 93;§ 1.
4, RESULTS AND DI SCUSSION

The calculations are carried out Ffor thres different
passage heights corresponding te the value of Reb egquals to
100, 200 and 300. The obtalned numerical resulkts are
represented in the Efollowing Eigures. Fig.(2} shaws the
velocity profile In the maln £flow directlon at Jdilfferent
values of ¢ for passage height corresponding xo Rcb = 200.

Near the entrance of the passage (&= 0.0714} the velacity is
almost uniform except near the walls of the passage.- With
increasing value of & the profile 1is developing till F£-=0.2,
there the veloclty takes a profile near that of fully
devsloped flow. The welocity at the center of the passage
against § and x/b is shown in Flg. (3)&{4}) respectively. As
it is expected, Flg.({4}), the veloclty increases rapidly as
the passage height is smaller or, in another word, the
entrance length 1s shorter for narrow passagas. UVocfficient
af friction is represented in Fig.(5)-(&). The co.ificlent,
in general, as shown in figure (&) has higher wvalues i case
of Reb = i0¢. 1It, for all values of Re , goes to asymptotic

values. A summary of numerical results are tsabulated in
table (1.

5. CONCLUSION

The technigque used 1in thls work introduces a self
starting method to solve the parabolic Navier-Stokes
equations, which ceéen be considered as a better approximation
of the full Navier-Stokes equations in comparison with
boundary layer approximation. According to the method used,
the velocity profile and other properties of the flow at any
pasltion along the passage can be independently predicted.
No more than the properties of flow at the =entrance
of the passage are required to carry out the solution at any
position along the passage.

5. NOMENCLATURE

2b the passage height
. . . . . F4
c, coefficient of Eriction , v /Jpo u
W =
£ dimensionless stream function , « /¥ u v X
L]
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E; derivative of dimensionless stream function at
the center of the passage , dox /Uo
Re, Reynolds number based on b , ub /v
Rex local Reynolds number , u x /v
u velocity component in x-direction
u_ the veloclty at the inlet of the passage
uO'x the velocity at the center of the passage at any X«
v the velocity component in y-direction
x co~ordinate along the lower wall of the passage
Y ca~-ordinate normal to the lower wall of the passage
) dimensionless independent varlable , y vﬁ:?I‘E
ny the value of 1 at the center of the passage
4 dimensionless independent variable , i V§_37ﬁ;
w fluid kinematic viscesity
o fluid density
Tu’x wall shear stress 1n x-directlon
W stream function
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Fig. (1) Schematic description of the flow between two parallsl plates
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Fig. (2) The development of the velocity profite of laminar
flow in the enirance region of the passage.
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Fig. (3) The velocity at the center of the passage versus
the dimensionless varigble &
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Fig. (4) The maximum velocity along the passage length.
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Fig. (5) The coefficient of friction versus the dimensionless
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Fig. (8) The coefficient of friction along the passage length
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—
Re . My l 2 #/ b C :
1400 |0.o714E86 | Q=102 2.25951
12.09 2.1GQR03 IRzlzie 3.244Q9
100 260 |ei2sSeee | 15425 @.037907
720  10,4238571 | 20408 2.23381
800 @ibbses? | 27778 2.03071
5.00 (2.000002 | 40000 2.02750 |
B Po.00 | 2050000 | 2.500 2.037715
12.00 2.071428 6| 10204 @.028474
12.00 2.083333 | 13889 0.024587
200 1.0 @.122002 | 2.8000 2.021622
28.00 @.125000@ | 3.125@ 2.2183882
PL.Q0 | Glesss7 | 55556 @.015309
05.50 @1210182 | s.6112 0.214552
25.00 | @200030 | B.0000 Ecmaa@
25.00 | Q.04000 |@.4800 10.932979
17,00 225832 | 102027 Q.022247
14.20 0271429 | L5306 2.@018753
12.00 2.09333 | 2.0833 2.016554
200 25,00 2.011111 | 37e37 @.013271
26.09 @185F2 | 4.6875 2.012225
37.20 @488 | o.1ER48 ! @.e11231
B4,29 Bl 1 8.2233 i 2.219201
0550 RISIBE | FAMe | 2.L0972
25,20 222000 | 12200 220785

Table (1) The us=d values of the problems parameters and
the corresponding coafficient of friction.



