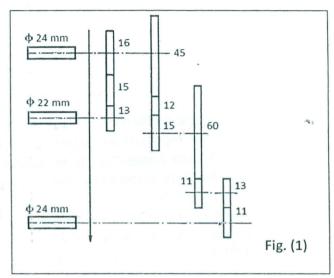
Mansoura University	Quality Control(Part 1)	Jan 2013 B.Sc Exam. Time: 3 hr (for 2 parts)	
Faculty of Engineering	Code (6412)		
Fextile Department	Full Mark: 110		

Part (1)


Answer the following questions:

- 1. a . What is the importance of quality control in textile industry?
 - b. What are fibre properties can be measured by AFIS and by HVI.
 - c. Explain the steps involved in conducting a waste% and cleaning efficiency of the blow room.
 - d. How will you calculate the cleaning efficiency of blow room through cleaning efficiency of blow room machines?
 - e. Explain the procedure to control comber noil% and Ends down in spinning
- 2. Write notes about:
 - a. Shewhart Cycle
 - b. ISO 9001 ·
 - c. Explain in details the appraisal cost of quality control
 - d. influence of yarn evenness on yarn and fabric parameters
- 3. The following table gives the processing detailes for producing cotton yarn Ne 30, fibre length is 24 mm, and fibre fineness is 5.3 ug/inch. Calculate:
 - a. The index of irregularity of 2nd drawn sliver, roving and yarn
 - **b**. Calculate the additional irregularity of roving and ring spinning frame
 - c. Wave length of drafting waves in yarn spectrum due to:
 - i. the main draft zone of roving frame
 - ii. the main draft zone of ring spinning machine.

Process	Doublings	Ne	C.V%
1 st	6	0.14	5.36
drawing			
2 nd	6	0.14	5.45
drawing			
roving	1	1.35	7.5
ring spinning	1	30	15.9

- 4. a. Explain the basic types of yarn irregularity, then discuss factors influencing them
 - b. Referring to the Uster Evenness Tester, what is meant by: normal test, inert test and Spectrogram? Explain how spectrogram could be utilized to locate mechanical fault and discuss the importance of variance length curve.
 - c. For the data in problem 3 draw theoretical variance length curve and draw-in process stages responsible for the mass variation introduced during the processing.

- d. If the most uniform 20 tex staple yarn has a C.V of 12.53%, what is the lowest C.V% you would expect for 14tex yarn produced from the same fibres. What would be the C.V% of a two fold yarn produced from the single 14 tex yarn.
- 5. a. Fig.(1) shows drafting arrangement of a ring spinning machine for producing carded yarn Ne 64. If the produced yarn is without periodic faults and has C_{Vm} of 17.5 %. To what extent does the C_{Vm}% value increase if the front bottom roller has an eccentricity of 0.5%? Calculate wavelength of yarn periodic fault due to 2nd bottom roller eccentricity. Assume that diameter of both top and bottom rollers are equal.

- b. Determine minimum and maximum spectrum wavelength of a yarn tested by Uster Evenness Tester at 400m/min for 5 minutes.
- c. Explain with a neat sketch the working principle of Shirley hairiness tester, showing how to deal with the output data.

تقرر عقد امتحان الشفوى يوم الأحد ٢٠١٣/١/٦ الساعة الحادية عشرة.