Mansoura University of Engineering

Faculty of Engineering

Course Name: (Surveying 2)

Course Code: (PWE. 8214

Date of Exam: 29/12/2010

1 st Semester
Academic Year 2010/2011

Time Allowed: (3) Hours

Level: (2nd)

Department: (Civil - Public works)

الفرقة الثانية مدنى (تخلفات)

Answer all questions and please illustrate your answer with figures.

Max. Grids 80

degrees

01	Idea (30) %	Steps (30)%	Calculations (30)%	Final Result (10)%	Marks(20)
- C	1404 (00) 70	Otops (00)/0	Carcalations (00)70	Tindi Nesdie (10)/6	marks(20)

Q 1-a) Calculate the correction of each horizontal angle of the above traverse? (15 pts)
Q 1- b) what are the Meridian radius of curvature (M) & Prime vertical radius (ρ)?
What is the Difference between Normal & vertical lines? (5 pts)

Q2 | Idea (30) % | Steps (30)% | Calculations (10)% | Final Result (30)% | Marks(20)

Q 2-a) Calculate the Cartesian coordinates of A and B. - Geodetic distance AB. - Azimuth of line AB.

Point	Φ		λ			h	
A	28°	25'	30"	30°	53'	20'	60.7m
В	28°	25'	59"	30°	53'	48"	78.0m

The WGS84 ellipsoid parameters are:

Semi- Major Axis (a) = 6378137

meters

Semi- Minor Axis (b) = 6356752.3142 meters

(10 pts)

Q2-b) Compute the adjusted angles of the observed angles in the shown figures by using equal shifts adjustment method. (10 pts)

Obs	served v	aiue		Coordinates	
	Observed value		Station	Е	N
30o	20'	50"	P	1885.82	1632.47
54	10	45	Q	1401.00	1045.76
55	44	38	S	7	P
39	43	39	6	/	8 1
41	53	49	7		
42	37	47		\times	
54	54	56			
40	33	30	$\left[\begin{array}{cc} \\ \end{array}\right]$		2
359	59	54	4	*	3
	55 39 41 42 54 40	55 44 39 43 41 53 42 37 54 54 40 33	55 44 38 39 43 39 41 53 49 42 37 47 54 54 56 40 33 30	55 44 38 39 43 39 41 53 49 42 37 47 54 54 56 40 33 30 359 59 54	55 44 38 39 43 39 41 53 49 42 37 47 54 54 56 40 33 30

Q3	Idea (30) %	Steps (30)%	Calculations (10)%	Final Result (30)%	Marks(15)

Q 3-a) A Roadway curve between two lines is to have a radius of 800 m. The tangents intersect at a chainage of 2550 m and angle of deflection is 400. Find the tangent length, External and internal distances, length of the curve, chainage of the apex and end of the curve.

(10 pts)

Q 3.b) A -2% gradient joins a 3.5% gradient. A vertical parabolic curve 200 m long is to be introduced between the two grades. Calculate the relative level of beginning, the lowest, (10 pts)

Q	4 Idea (30) 9	% Steps (30)%	Calculations (10)%	Final Result (30)%	Marks(20)
				1	5

Q4-a) Give a short notes on the following:

- a) Intersection & Resection
- b) Control survey & detail Survey
- c) Meridian radius of curvature (M) & Prime vertical radius (ρ).
- d) Geoid undulation & Deflection of the vertical

(10 pts)

Q 4-b) In the following figures determine the number and type of the condition equations, and write down only one equation of each type. (10 pts)

