Menofia University Faculty of Engineering Shebien El-kom **First Semester Examination**

Academic Year: 2017-2018

Department: Prod. Eng.

Year: 1st

Subject: Eng. Mathematics Time Allowed: 3 hours

Date: 31 / 12/2017

Allowed Tables and Charts: None

Answer all the following questions: [100 Marks]

Ouestion 1 [50 Marks]

(A) Find the general solution of the differential equations

[ID Marks]

(i)
$$\frac{dy}{dx} = \frac{4x+6y+5}{2x+3y+4}$$

(i)
$$\frac{dy}{dx} = \frac{4x + 6y + 5}{2x + 3y + 4}$$
 (ii) $(2xy - \sec^2 x)dx + (x^2 + 2y)dy = 0$

(B) Find the solution of the initial value problem

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} = 1, \quad x = 0, \quad \frac{dx}{dt} = 0 \quad when \ t = 0$$
 [5 Marks]

(C) i) Solve the differential equation $(x^2D^2 - xD + 2)y = x \ln x$ [5 Marks]

ii) Calculate the volume of the body bounded by the surfaces:

$$z = 4 - x$$
, $x + y = 2$, $x = y = z = 0$ [5 Marks]

(D) (i) Solve the following system of simultaneous ordinary differential

equations.
$$\frac{d^2x}{dt^2} = y \quad and \quad \frac{d^2y}{dt^2} = x$$
 [5 Marks]

(ii) Solve the following ODEs

[10 Marks]

1.
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x$$
 2. $(D^2 + 9)y = \cos 2x + \sin 2x$

(E) Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = te^t$ using

<u>Laplace transform</u> with initial conditions: x(0) = 0 and x'(0) = 0.

Question 2 [50 Marks]

- (A) i) Find the interval of convergence of the series $S_n = \sum_{i=1}^{\infty} \frac{(2x)^{i}}{n}$.
- ii) Calculate the double integral $\iint f(x,y)dxdy \text{ for } f(x,y) = 3 x^2 y^3$

and D is bounded by $0 \le x \le 1$, $0 \le y \le x$.

[5 Marks]

(B) Find the inverse Laplace transform of the functions

(i)
$$F(s) = ln \frac{s+1}{s-1}$$

(i)
$$F(s) = ln \frac{s+1}{s-1}$$
 (ii) $F(s) = \frac{1}{(s)(s-2)(s-4)(s-6)}$

[ID Marks]

(C) Find Laplace transform of the following functions

(i)
$$f(t) = \frac{1 - \cos t}{t}$$
 (ii) $f(t) = \begin{cases} 0 & t < \frac{2\pi}{3} \\ \cos(t - \frac{2\pi}{3}) & t > \frac{2\pi}{3} \end{cases}$ [10 Marks]

(D) Test the convergence of the following series:

(i)
$$S_n = \sum_{n=1}^{\infty} \frac{2n-1}{2^n}$$

(ii)
$$S_n = \sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$$

[5 Marks]

(E) A periodic function f(x) with period 2π is defined as follows:

$$f(x) = x$$
 $-\pi \le x \le \pi$

- i) Plot the function.
- ii) Find the corresponding Fourier series.

[10 Marks]

(F) Evaluate the area bounded by the straight lines y=0

x = 1 and x = 4.

[5 Marks]

With our best wishes Dr. Mohammady Bassiouni and Associate Prof. Dr. Islam M. Eldesoky