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Abstract : The reqular reductive intedgral equations method, developed
earlier to solve creeping flow problems, is considered. This method
required merely the solution of a scalar integral egquation on the
boundary of he domain. Through a Jjudicious linearization and

transformation of variables, this method is extended to include cases
with non-negligible convective term. This new technique is applied to
the hydrodynamic entrance zone in a rectangular duct of infinite length.

1-INTRODUCTION

Fluid 'mechanics and heat transfer problems can be formulated in

either a differential or an integral form. Differential formulations,
which involve continuity, Nawvier-Stokes and eventually the energy
eguations, are, up till now, the most widely used. However, integral
formulations, which require the transformatlion of the partial
differential =ystem of -equationz into an inteqral system, are more
promising and constitute a rapidly developing field of computatlonal
thermofluids. This has two main reasons
l1- Approximate methods (like weighted residuals, finite elements,
perturbations,.. etc.}, which are extensively used in differential

formulations, are also applicable teo integral formulations, and
perform generally better in the later case. The higher convergence
rate encountered is attributable to the elimination of delicate
operations inherent in differential formulations 1like numeric
differentiation, or differentiating an infinite series. The analysis
required to eliminate these operations ensures the embodiment of the
correct gualitative behavior in the solution.

2- The problem to be solved can be greatly reduced when recast in an
Integral form. In Efact, the number of independent wvariables (and
sometimes the dependent variables also} are usually reduced, since
integral eguations are generally defined on the boundary of the
domain. This may open the realm of 3-D time dependent problems to
systems with modest computational resources.

These decisive advantages are not without a counterxpart. In fact,
an extensive preliminary an+4lysiz should be performed in order to find
the eguivalent integral formulation, which has so far been done for only
few cases.

In this work, after a brief overview of integral eqguatlion methods
(in section 2 where more light is shed on the regular reductive method),
4 new transformation will be proposed in section 3 in order to extend
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also vanish at the duct walls (%<0 or a4, and y=0 or b), and acqulre the
fuliy developed regime at exlt (at infinity}. At the fully developed
regime, the velocity and pressure gradient have only the axial component
wigix,y) and -C respectively (vwhere C is a constant). Thls leads to the
following system :

(1/RE) ¥2 vV = (V . V) Vv + T P 4.1 a
v . v =20 4.1 b
n v =0 for %=0 , x=a , y=0 , or ¥=b 3.1 c
n v = -1 for z=0 4.1 d
n . V = ¥fa for 2 —> © 4.1 e
n* v =20 och &% 4.1 £
The above system has been made nondimensional using the

hydrodynamic mean depth as the characteristic length and the gmplitude
of the constant velocity at inlet as a characteristic wvelocity. The
fully developed velocity and pressure gradlent are obtainable from:

v? wiglx,y) = - RE C 4.2 a
weglx,y) = 0 for x=0 , x-a , y=0 or y=b 4.2 b

wgg dx dy = a b 1.2

by separation of variables, which yields

wgg = RE C {4/a) B pgg sini{nnx/a) (nn/a)ﬁ3 faly) 4.3 a
friyr= 1 - [sinh(nmyfb]*sinhggn[b~y}/a}!fsinh(nnb/a) 4.3 b
RE C= ab/{(8/a) L, ggginr/a) bll-tanhineb/(2a)}/(nxb/{2a)}1} 4.3 ¢
Applying the transformation cxposed in section 3, taking U as the

inlet wvelocity, we get for the first iteration (i.e. neglecting the
minor nonlinear part of the convective term)

"
(32+K‘)v: (RE/e} ¥V P 4.4 a
g e = 0 4.4 b
v . v = - (RE/2) 2z.v (z being the unit vector in the z direction)
= RE/(2 e) for x=0 , x=a , y=0 or y=b 4.4 c
=0 Lor z= 4,4 d
= - (RE/2)} (wgg-1) Eor z > ® 1.4 e
n v = 0 for z=0 , %x=0 , %x=a , y=0 or y=b 4.4 £
= wgqg - for z > = 4.4 g
n*¥v =iz %*nl)/e for =0 , x=a , y=0 or y=b 4.4 h
=0 for 2=0 , 2 -0 w 1.4 1

The following complete system at the boundary, expresses the
pressure In terms of the unknown pressure constants Ayks Bixs Cij

P

Cyk &5k ¥5(y) k exp(-k 2z} - C z for x=0 or a
Lix Big Xy(x) k expl-k 2) - C =z for y=0 or b
Zjj Cig Xilx)y Y5(y) for z=0
Xjtx)= r(2/a) sin ( (2i-1l)ax/a }
Y5{y)= v{2/b} sin ( (23-1l)ny/b )

nmn

[ S - e A -
vt unoun
o0 o

Solving 4.4 b, takling into account boundary conditlons 4.5 and the
fact that P tends to -C z when z tends to lnfinity we get:

P =~Cz + Exlujhyp Y5 K c_k: (sinh{ky'x) t sinhtky'ta-x))1/sinh(ky'a)
CjBix X5 K \E--kz [sinh{k{"y} + slnh(ki{"tb-y})I/sinh(k{"b)}}

x4z Ajk k (21-1)un 2v(2/a) Big kK (2J-1)x 2r{2/b)
+L XjY¥4ie {Cf4 = Bl Sy o g e ) ]}

13 k atay;® - k% blajy2 - k%) 4.6 a
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the domain of applicablility of the considered method. An applicatien of
the extended wversion will be given in section 4, followed by a
conclusion in section 5.

2- OVERVIEW ON INTEGRAL EQUATIONS METHODS

2-1 GENERAL

It is not an evident, nor an easy, Ltask to glve a wunified
presentation and classification of such a rapldly developing field of
computational thermofluids. An attempl towards Lhe construction of this
presentation will be given here. Consider the followving general problem:

T I U] =g in 1) 2.1 a
ClL U]} = ug on an . 2.1 b
where TI[.) is a differentlial cperater, U the unknewn functlen, CI.) an

operator expressing boundary condlibtlons, & and 68 are respectively the
domain and its boundary, and 9 and u,; are known functions.

Assume that the solution of a gualitatively similar preoblem is
known:

i H

g’ in 1) 2.2 a
ug ' on &% 2.2 b
By guallitatively similar we mean that T and T' are of the same order and
type (ex. both elliptic or parabolic,..) and that & < %' . The general
solution can be expressed wusing the Green’'s functlen Glr,r') of the
auxiliary problem in the folloving form

U =0Gyy [ g' 1 + Gyz | ug'l 2.3
where Gl.] 1is an integral operator having the Green's function as a
kernel, the flrst subscript represents the domaln of definitlon of the
image (v for wvolume and 5 for surface!), the second that of the range

va(q'] = IG(E,I') g'ir') av' 2.4 a

r'ca

Gyglug'l = j G'{r,z")y ug’(r') dJda' 2.4 b

r‘egdp
wvhere G'(r,r'") ls obtained frem G(r,r'} wusing standard procedures
(cf. MORSE & FESHBACH {1953). Note that T'[Gygl.]11=0 , C {Gyyl.))=0

Defining Tgl.] (the difference operator )} as:

Tagl.1 = T'[.] - T(.] 2.5
and assigning to g' the value g + Tgq tU) , equation 2.3 takes the Eorm

U= Guyl Pqg L U 1+ g1 ¢ Gys [ ug'l in & 2.6

It 1is «clear that ¢the above expression of U satisfies 2.1 a
Substlituting in 2.1 b we get

Cl Gyl Tg L U + g 1 + Gyg [ ug'll=ug on a4 2.7
Equations 2.6 and 2.7 constitute a system of Integral equatlons in

the wunknewns U , ug' . Generally, we have to solve only one of these
equatlons. IE T'l.] =T l.]) then Tgl.1 = 0, and we have to solve 2.7
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only to get ug', then substitute in 2.6 to get U. If C'[.3 = Cl.] then
we can put ug'=sug to make 2.7 Lrivial, and solve 2.6 to get directly U.
Integral eguation methods can thus be classified into non
reductive, when we have to solve 2,6 in the whole domain to get U, and
reductive, when we have Lo solve 2.7 on 482 only to get ug' and hence U.

2-2 NON REDUCTIVE METHODS

As has been mentioned above, in this case equation 2.6 should be
solved in & Eo get u. The introduction of the Green function of a
‘esembling problem means that the problem is partially resolved
inalytically, which results in a good qualitative description of the
solution behavior. Using standard procedures {like discretization or
series expansion), we get an algebraic system whose matrix is not
nultidiagonal but is dlayonally dominant. This disadvantage can be
overcome by regionalizing the method in order to have a multidiagonal
matrix by block (since eacn region is directly related to adjacent
regions only}. These methods are called Local Green's Function Methods.
Iin a comparative review (DORNIUG 1981} has observed a reduction of up to
1000 times in computer time compared to finite difference methods.

?-3 SINGULAR REDUCTIVE METHODS

Reductive methods, wher: we have to solve 2.7 on é&2 only, c¢can be-
subclassified inte singular and regular (discussed in the next
paragraph).

In singular methods, the domain f' iz infinite allowing the
oossibility to find relatively =asily the inverse of T[.). Hence, T'[.]
ils chosen identical to T(.], and ug' is fixed such as to guarantee
cegularity at infinity. The zource term g' is identical to g inside 1,
vanishes outside & and assumes a distribution of singularities on ¢2

g' =g+ gg &lr - r3) r. E 42 2.8
where 4(.) is the Dirac distribution. This makes it easy to lntegrate

Guyy [ g5 dlr-zr5) 1 = Gyg' | gg ! 2.9
which 1s an integral equation on 6% in the unknown function gg. Once

solved, U can be obtained easily from 2.6.

HESS and SMITH (1966) studied extensively the harmonic equation for
potential flows, wusing this wmethod. Fer viscous incompressible £lows
with two veloclty components, il is possible to derive a biharmonic
equation for the stream function and use this class of methods. This has
been done by GLUCKMAN et. al. (1972} for axisymmetric flows and Dby
"ALEMAN {1981) for 2-D flows. Finally, YOUNGREN and ACRIVOS (1275) have

rived a singular reductive method for Stokes' equation for 3-D
-~berior flows inveolving an unknown vector function on the boundaries.

2-4 REGULAR REDUCTIVE METHOD

Since the proposed method belongs to this category, a more detailed
presentation will be given. In this methed, ' coihcides with 2, bgt
both the operators (T , T'}) and the boundary conditions (C , C') are in
general different. The differences are chesen such as to reduce the
following term by integration by parts :

GVV [ Td l U ] 1 = GVSH[ v 2.10

where the H®HS represents the boundary term, whereas the other term
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resulting from {integration by parts (the wvolume 1integral) wvanish
Hence by substituting in 2.7 we get an integral equation on the surf.
In the unknown U (we can assign dny desired value to u *). Once 3s50ln
we can substitute in 2.6 to get U in the whole donmain.

To be specific, let us consider o simple éxamplu vhlch 1is
linear hydrodynpamic problem. To solwve it we assume Lhat the GCreel
function of the wvector Laplace equation is known inm  the consider

gecmetries (see Appendix 1)}. The problem is governed by the continuirc:
and Stokes' equations

V2 v = RE v P 2.11 =~
v v= 0 2.11 .
n . V= U, on 42 2.11 .
n * V= Ut on on 2.11 o

wvhere V Is the velocity, P the pressure, n the unit outward normal, ¢~
the Reynolds number, U, and Ut are known functions, and the dot (.} and
the asterisk (*) represent respectively the scalar and wvector producce
(boldtace characters represent vector functions or operators).

Thisz problem has Lwo nnknown fLunctlons ¥V and P and two partlai
differential eguatlions. Bubt Lhu pressure eguation is not explleit.
Therefore, leb us reconstruct {L by applying Lhe divergence to 2.11
and use 2.1l1 b to get

Uz P =20 2.1
This could replace 2.11b if a new boundary condition were added, since
it has a higher order. In fact, if we apply the divergence to 2.11 a
and use 2.12 we find

VZ { V. v} =0

It is evident that the missing boundary condition is simply
v . V=20 on da

To sum up, the newv system Lakes the form

v ¥ = ¥ P in it} 2.13 a
v* P o= 0 in = 2.13 b
v v = 0 on 4% 2.13 ¢
n . v = U on 48 2.13 d
n * v = Ug on 49 2.13 e

Mow let wus invert the vector Laplacian operator ir 2,13 a using
boundary conditlons:2.13 c,e

v =l Pl -8 2.114

where § is 4 knovn texm that depends on Up, and G{.) the green's tensor
cf the vector Laplacian operator corresponding to conditiens 2.13 c,e.
By applylng the last condition 2.13 d we obtain the integral equation

n . 609 P1l=n.5 +U, on 6% 2.15

SABRY (1984) has forwally proved using 2.13 b that the integral -lin
the LHS of 2.15 involves the values of P on the boundaries only. Another
simpler approach, from the practical peoint of view, is to solve formally
2.13 b to get P in ft In Lerms of the yet unknown values of the pressure
on 48 (Pgi:
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P =G I[ Pg ) 2.1%
Hence by substituting in 2.1% we gel Che sought [or eguation on 6f
n . G661 vVGI[Pg )l =n.85 +u, on én 2.17

Once solved, we can substitute in 2.16 to get P and hence in 2.14
to get V.

The advantages of this appreach include the use of the Green's
function of a slmilar problem which ensures a high convergence rate
(since the problem is partially resolved analytically). In addition, the
reduction of the number of independent wariables (solution on d&) and
dependent wvarlables {only wone scalar unknown function Pg) cause a
dramatic decrease In computing effort. The only 1liwmits are the
geometries in which this method can be applied {ihis can be relaxed on
the expense of some of the abuve advantages cf. SABRY 1984}, and the

nature of the differential equation to be solved. In fact, the above
exposed mwmethod is suitable for the Stokes' equation only (creeping
flow). In this work, we propose tou relax this restriction as will  be

shown In CLhe next section.

3 - THE PROPOSED METHOD

In thls section a new transformation 13 proposed which is
applicable for cases where a cunstanl average velocity U can be defined,
such as flows around moving bodies and internal flows in ducts of
constant cross-section.

In the flrst step, let us decompouse the veloclity Eleld into a known

constant value U and an unknown variable velocity u :
V=UH+nu 3.1
By substituting in <the nondimentionalized MWNavicr-Stokes' and
continuity eguations
(L/RE) V2V = (Vv .91 V=V P +38 3.2 a
v . v = 0 3.2 b
we get
(1/RE} ¥ ? v-{U.¥J]vs=s ¥ P + 38 3.3 a
v . u = 0 3.3 b
1ere g* = s 1 {u.V}u 3.3 ¢
In this step the nounlincar Lerm has been decomposed into a major
‘near part (the second term in the LHS of 3.3 a) and a mino; nonlinear
part (the second term in the RHS of 3.3 c). In many cases this last term
can be safely neglected, at least in the first approximation, to yield a
linearized version of the Havier-Stokes' equation which is less

restrictive than the Stokes' eguation (2.13 a).
The second transformalion conslulbs ol Lhe substitution @

e v 3.4 a
exp ((a VU . x|} 2.4k

u
where e
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and a 1s a constant to be determined shortly belov. From the definition

gf the Laplacian operator, and using vector lidentitles and 3.3 Db,
ave:

Vou=v {9 .u)-9v*{9g* )

= 0 -9 * [ TX {ewv})

-~ T * (e (V*v) + (T e} *v)
= -e ¥V * AV *v) - (T e) & (¥ *v] - % [ (F ) * v ]

The last term In the RHS can be decomposed into

-V *x { (VT e) *x v ) = t(v e} . ¥ v - Ti{T &) . vi
- {V el (T.v) + v Ve + (F e} * (V * v)
= 2{ive) . V] v - U[(V7 &) .zv]

= {¥{e (V.v)]) + e Wi{V.v) + v V7 + (V e) * (¥ * vy}

Since Ve = ¢ U , we receive

V2 u = e { v2 v i 2a (UV)v & {aU)2 v o) 3.5

1]

Also, the term {(U.V) u becomes after the substitution of 3.4 a

{U.9) v = (U.V) (e v}

it

{ Vie U.v)-U%(e Urv)+U(V.(ev))}-U*x[T*le v} ]1/2

1

e(U.Viv + a e [ (U.vIU - UX(U*v) }

=e { (U.V) v + & U2 v} . 3.5 o
also, Y.u = e (V.v) + v (Ve =20
hence ¥ . v = -a U.v 3.5 ¢

Substituting of 3.5 in 3.3 we obtain

(e/RE) {vzv + (2 a - RE) (U.¥) v + ( (aU)2 - a RE U2 b v}

= g8 4+ 8§ 3.t

Now If we take a=RE/2 , the linearized part of the convective term (the
second term in the LHS of 3.6} will vanlish giving Elnally

2 2

(V" + K ] v = [(REfe} (VP + §'} 3.7 ¢
v = ~(RE/2) {(U.v]) 3.7
vhere K2 = ~(RE/2)2 3.7 .

This 13 a vector HKelmholtz equatlion whose Green's function can b
easily ocbtained using standard procedures (see Appendix 1)

4 - APPLICATIONS

As an example, we have considered the problem of finding the 3-
flow fleld in the entrance reglion of a rectangular duct of inflnlf
length. The flow enters alk a constant axial velocity {in the
directien} and without any tangential component. The veloclity sk
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where “1? = vl ((21-1]n/a]§ LS (ﬁZj-l}u/b)2 ] 4.6 b
kgl = v0 ({25-11n/b)5 - k3 | 4.8 ¢
Ki" = v ((21-1)w/a)® - k° ) 4.6 d

Substltuting In 4.4 a and solving formally takiny Iinte account
boundary condltions 4.4 ¢,d,h and i (the conditlon for 2 ~> = 15
aptomatlically taken lnto account due to the pressure form adopted), we
obtain an expression for v (the Green's function for v is given in the
appendix) in Ferms of the pressure constants. Finally, applying the last
boundary conditlon (4.4 £} on this expression, and inteqrating over the
surface (usilng as weights the functions over which the pressure is
expanded)}, we get an algebraic system in the unknown pressure constants:

Ly A4y Elljkq + Ljx Bix El2jjkq + Tf Ciy E13qu = 0 1.7 a
Ejk Ajk EZlij,\q + Ty Biy EZZikq + Ej Cij E231]q =0 1.7 b
Ly Ajk EBlijk + Ly Bjk E321jk + Ciy E33ij = E301j 1.7 ¢
where EIJ are constants resulting from integration, and i,3,k,9 range
from 1 to N (the value at which the system is truncated). It is easy to
eliminate Cj4 from this system. To eliminate A4y we have to Invert N
matr ces of "slze N*M. This gives a system in tﬂe Bixy wvhose matrix Is

N"*N", Once solved, Wwe can substitute in 4.6 to get P and hence wv.
Finally, V can be obtained from 3.1,4. The tesults are shovn in figures
4.1 - 4.5 for Reynolds number = 100 and a/b = 2 ,taking N=5.

5 - CONCLUSION

In thls work, we have considered the regular reductive method,
which is an integral eguation metiicd proposed ecarlier (SABRY 1984) to
suolve creeping flows governed by the Stokes' vgualbion with or without
heat transfer. B

A new transformation is proposed in order to extend the domain of
applications of this mekthod to flows having a non-negligible (though a
non~-dominant) c<onvective term. This is achieved by 1linearizing the
convective term and applying & new transformation of the resulting
linearized MNavier-Stokes equation into the vectoxr Helmholtz eguation,
vhich can be solved using the regular reductive method.

an example, thls new technigue has been applied to the study of
the flow field in the entrance zone of a rectangular duct of inflnite
iength. The zresults conform with well established empirical results of
this classlical problem.

as a future research proposal, it is suggested to study thoroughly
#  convergence rate and the effect of the neglected part of the non-
_near convective Lerm
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APPENDIX

MORSE & FESUEACH (1253} have presented o method to find the Green's
function of the vector Helmholtz eguation in special geometries, where
the boundaries are Forwmed DLy ¢ocrdinate nurfaces. One of these
coordlnates (x3) will be called privlileged. The coordinates for whilch
this method is applicable are

*¥* Cartesian coordinaltes, %y could be x, y or z.
* Clrcular, elliptic or porabelic cylindrical coordinates, x, beling the
axial distance z

* Spherical or conical coordinates, xj being the distance Erom the
origln r.

The governing eguations are
V2 + K2 ) G{r , r') =1 6 (r - ') in 1] 2.1 a
{

{
c G|l =0 on  6f A.1 Db

where I 1s the unitary tensor. The solution takes the form

3 @ 2 2
G(r,r')='zq:1:n=qun‘r) 3] Fqn(r‘] / lAqnthn ~ K 1)

A.2 a
whete Fin = v ¥1n 5.2 b
Fop =V * (&) Mixy) @2 ) A2 ¢
Fin = V * IV ¥ (g9 R{xq) b3y I A.2 d
an = reg F(_]I"l . F(In_ Jwv ) A.2 e
Hi{xyi= {for carteslan and cylindrical coordinates)

L]

%1 (for spherical and conlcal coordinates) a.2
a represents the tensor product.

Index n xrepresents a trlo of number i,J and k, while ®qn and Kgpn are
elgenfunctions and eigenvalues of:

2 2
( 7% + Kgn® ) *gqn = 0 A.3
The boundary conditions on ¢g,; are such as to make Fgp satisfy &a.l1 bD.

Applying the above methed to our problem glves, after summing over index
k, the sought for green's Eunction:
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G =fiq [ 1Al xjy'(x) Y3 (y) Xj'(x') ¥5 0y') G35 (z,2')
v odud X (k) Y§'iy) Xj &x') ¥3'(y') 61y (z,z')
toJud X () Y3 (¥) X (x') Y {y'] Gyy'lz,z') ) A4 a2
where Xi'(x) = v(2/a) cos ((2)-1)nz/a) A.4 D
Yj'ty) = v{2/b) cos ((2)-1)uy/D) h.d C
Gyjyle,2' )=~ sinh(fyg 2z} exp(-Njj 2'1/0y4 for z'>z
or - exp{-8ij =z sinh{Bj5 z'}/0yy for >t Ao d
Gy e,z b= = conhiByy =) expl By 2"/ for z'>2
or - expl-Big =t voshiBgy 2"} /05 for z >z A.4 e
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