

Mansoura University
Faculty of Engineering
Mech. Power Eng. Dept.

361.0

2nd year Production Eng. Final Exam., jun 2009 Time: 3 Hrs

Computer application

Attempt all questions, assume any missing data

Question No. 1:

- 1) Sketch the block diagram of the structure of typical programmable logic controller and define the scan time
- 2) Sketch the CNC machine control and define the job for each part
- 3) Write the following expression for the statement in CNC program
 - A) N5 G92 X-1.000 Y1.000 Z1.000
 - B) N40 X1.625 Y-.375
 - C)N10 G00 X1.25 Z.100
 - d) N5 G92 X-1.000 Y2.000 Z1.000
 - f) N5 G92 X-2.000 Y1.000 Z1.000
 - g) N10 G92 X-1.000 Y1.000 Z1.000
 - h) N5 G92 X4.000 Y1.000 Z1.000
- 4) Sketch the CNC schematic diagram
- 5) Sketch the CNC machine block diagram

Question No. 2: take the error less than 0.01

1) Solve and sketch the flow chart of solution of equation

$$\frac{\partial^2 \phi}{\partial X^2} + \frac{\partial^2 \phi}{\partial Y^2} = 1.5$$

in the body with dimension in horizontal direction 10 cm and in vertical direction 5 cm take the boundary condition at x=0, $0 \le Y \le 5$ Φ =1 and at X=10 cm $0 \le Y \le 5$, Φ =1.5 at y=0, $0 \le X \le 10$ Φ =1 and at Y=5 cm $0 \le X \le 10$, Φ =0.5

2) Solve and sketch the flow chart of solution of equation

$$\frac{\partial \phi}{\partial t} = \frac{1}{\alpha} \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$$

body with dimension in horizontal direction 10 cm and in vertical direction 5 cm take the initial condition at t=0.0 x=0, 0 \le Y \le 5 Φ =0 and at X=10 cm 0 \le Y \le 5, Φ =0.5 at y=0, 0 \le X \le 10 Φ =0.2 and at Y=5 cm 0 \le X \le 10, Φ =0.1 take Δ t=0.1 and solve at 0.3 Δ t

Question No. 3:

- 1) make the step for solve the model
- a) The Denavit-Hartenberg Parameters in Robotics
- b) Full Rigid-Body Motion Composition of Motion
- 2) Consider a in Robotics

PUMA 560 manipulator with

$${}_{6}^{0}T_{des} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 1\\ 0 & -1 & 0 & 1\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

And assume the Denavit-Hartenberg parameters are as listed in the table 1 assume a_1 =0, so find θ_3

Table (1) PUMA 560 Denavit –Hartenberg Parameters

i	α_{i-1}	a _{i-1}	di	θ_{i}
1	0	0	0	θ_1
2	-90	0	0	θ_2
3	0	3	1.1	θ_3
4	-90	05	3	θ_4
5	90	0	0	θ_5
6	90	0	0	θ_6

Using the following function to solve above problem

$$f_1(\theta_3) = a_2 \cos \theta_3 + d_4 \sin \alpha_3 \sin \theta_3 + a_2$$

$$f_2(\theta_3) = a_3 \cos \alpha_2 \sin \theta_3 - d_4 \cos \alpha_2 \sin \alpha_3 \cos \theta_3 - d_4 \cos \alpha_3 \sin \alpha_2 - d_3 \sin \alpha_2$$

$$f_3(\theta_3) = a_3 \sin \alpha_2 \sin \theta_3 - d_4 \sin \alpha_2 \sin \alpha_3 \cos \theta_3 + d_4 \cos \alpha_3 \cos \alpha_2 + d_3 \cos \alpha_2$$

3) make the step for solve the model using Newton's methods

Good luck