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Abstract:—Flliptical gears are one of the most commonly used mechanical
transmissions employed to produce a non-uniform speeds needed in some
industrial applications. In such mechanical gear transmissions, friction and
‘backlash are the major sources of energy and accuracy losses. Elliptical
gears are more complicated in manufacturing than others, hence, backlash
is more severe which leads to an accuracy loss. This work presents two
alternative possibilities for replacing elliptical gears by a crank-crank or
pure-rolling cam mechanisms.

1 INTRODUCTION

Flliptical types of mechanical gear transmissions are often used to produce
a non-uniform speed in many industrial applications, For example, to damp
the shaking effects occurring in other mechanisms when connected in series
with them. Klliptical gears can also be used in special design tasks like
turning a carrier with a small radius fo actuate wheeled robots as introduced
by Emura and Arakawa [1]. The largest sources of energy loss in this kind
of mechanical gear transmissions are the friction and backlash. A large part
of the friction comes from the sliding motion.
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Figure 1: Identical elliptical gears

It is well known that, elliptical types of gears should be produced with a
high accuracy machining as mentioned in [2]. Also, the machining process is
known to be very complicated and the machining accuracy is generally not
guaranteed. One of the big challenges for the elliptical gear designers is to
obtain the desired non-uniform speed while using input-output intersecting
axis. , '

A methodology for designing spherical cam mechanisms with a pure-rolling
contact has been developed in [3]. The same methodology has been used
in {4] to synthesize a cam mechanism for driving a shaking conveyor beilt.
The main benefit for using such cams is that they offer lower friction losses
and negligible backlash, thereby leading to a high efficient transmission.
This work presents two alternatives to the elliptical gears: spherical crank-
crank mechanism (SCC), and spherical cains with pure-rolling (SCPR).

A methodology for designing the spherical crank-crank mechanism to gener-
ate elliptical gears motion, based on using a suitable optimization technique
to synthesize it with a suitable configurations is proposed.

The main benefit from using the spherical crank-crank mechanism to gen-
erate the desired motion is that the required machining process is more
economic than the machining process of both elliptical gears and cams.

2 ELLIPTICAL GEARS MOTION
RELATIONSHIP

Two identical elliptical gears ‘are shown in Fig. 1. The two gears can cor-
rectly mesh at any instant under the conditions that the pitch: point p be
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on the center line O,0;. As well as, the sum of the lengths from Oy and O,
to the contact point p between the two pith curves is constant and equals
to the major ellipse diameter given by (2«), as stated in [5-6].
The ratio of the instantaneous angular velocities of the two elliptical gears
can be formulated to be inversely proportional to the distances from the
centers of rotation to the pitch point p. Therefore, if two elliptical gears
make contact al py and ps as shown in Fig. 1, then the ratio of the instan-
taneous angular velocities can be written in the following form:
£.n (1)
¢ T2
where 1 and ¢ are the input and the output angular velocities. The pitch
_curve of the input gear can be expressed in polar coordinates as follows:

b2

- a{l + cosy) — d cos® (2)

71

where b is the minor ellipse radius, and d is equal to (@ — e), where e-is the
distance between the center of rotation (focal point) of the input gear and
its geometrical center. We also have:

r1+Te = 2a (3)
Lhereforé from Eq. 2 and Eq. 3

o d® + 2a(a — d){(1 + cos ) )
7 T a(l £ cosg) — deosep

where -
(@ =b)(a +b) = (a = d)? (5)

The angular velocity qﬁ ol the outpul gear corresponding to an angular
velocity 9 of the input gear, is given by:

b= ¢'($)d , (6)
By the same token, for-a constant 'z/}, the acceleration can be written in the
following form: '

. .

¢ = ¢" () {7)
where ¢'(¢) is the wvelocity ratio which is equal to (r1/r2), and ¢"(3) is
the acceleration ratio. The velocity ratio ¢'(y) can be formulated as follows:

b2

¢'(%) = d? + 2a{a — d)(1 + cos) | v

By differentating Eq. 8 the acceleration ratio ¢"(¢) can be given by

2ab*(a — d} sing

{d? 4+ 2a(a — d)(1 -+ cos )| (9)

¢"(Y) =
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The output angular position ¢ can be given by integrating Eq. 8 using the
following integration standard form

2 _ .
gy [ dv o ((11 L) tanng)) (10)
{1 4 Iz cosyp l%—l%,: fl%—l‘g‘ "
where
lo = 2a(a — d), and
I o= lp + d
Hence, | ,
2 t 2 _
¢ = 2 tan ™t dtan(y /2) (11)
d\/dz +da(a — d) \/d2+4a(a~d) :

Here, the integral constant is equal to zero because ¢ = 0 at ¢ == 0. This
equation and its derivatives give the desired objective functions.

3 SYNTHESIS OF SCC MECHANISM
TO GENERATE ELLIPTICAL GEARS
| MOTION

The spherical Crank-Crank mechanisrn (SCC) of Fig. 2 is used to gener-
ate the elliptical gears motion, its parameters can be determined from the
equation below [7]: :

ki — kycosd + kzcosy -+ kgcosdeosy +singsinyg =0 (12)

with the definitions:

COS (¥] COS (v COS (¥4 — COS (¥g

ki = - -
SH o Sin Qg
sine;
]Cg = —
sin ag
s oy
by = —
SiT ey
ks = cosay

in which ¥ and ¢ are the input and output angles. In Eq. 12, it is assumed
that ks < 1 and that all angles (i.e., {¢; 2 ) lie in the range of 0° to 180.0°.



Figure 2: Spherical Crank-Crank Mechanism.

In ovder to ensure that the linkage is of the spherical crank-crank-link
Lype, the constraints (conditions for full-mobility) below must be imposed
[7] ['or an iuput crank, we must have

(ka — ko)* ~ (~3 k)20 (134)
(ko -1- k2)® = (ks — £1)* 2 0 (13b)
while, for an outpuﬁ crank:
| (ka + ka)? — (k1 — ko) > 0 | o (13¢)
(ks + kg)* — (k1 + k2)* 2 0 (13d)

A complete study of these parameters is included in the Appendix to for-
mulate the output angular position ¢, the velocity ratic ¢’'(4) and the
acceleration ratio ¢” (1) which must satisfy the desired objective. functions.
The output angular velocily ((ﬁ ) and the output angular acceleration (¢)
can take the same form as in Egs. 6 and 7. Moreover, the input/output
{I/O) relation given by Fq. 12 can be rewritten in the following form:

flh,d, k) =& — kacosep + kacostp - kacospcosyp +singsinyg  (14)

The previous equation, for m [/O pairs, can be rewritten into a common
form, namely Sk = b, Where, S is the m x n synthesis matrix and b is
m~dimensional veclor. The design errors can be defined, using the latter
equation, .to be the IBuclidean norm of the associaled design error-vector d,
and can be written as: _ :

d=b—Sk (15)
The transmaission defect is the complement of the {ransmission quaith in
‘the sense that the two quantities add up to 1.



The transmission quality measures the goodness of the transmission angle
throughout the operation. The transmission defect of SCC mechanisms
should be considered through the optimization procedures. For spherical
crank-crank linkages, the transmission defect § takes the form [8]:

6 = (%)Z(UE + vg — 2u4v5 — 0.5v2) , (16)
3 .

.where the coeflicients v;, for ¢ = 1,2, .., 6, are only functions of the spherical
four-bar linkage parameters (k;, 7 = 1,2, 3,4}, and are given by:

——————
th = »:-l» (1 — k2k3L4 kl(] k4) ) (17&)
2 VO + k2 — k21 + k3 — k3)

vy = 4/1 + k3 — k3 - (17b)

g == _ [koksky — k(1 — K3))2 e
U3 = \J (1 (1+ k% —k3)(1 + k% — k-;})) (1 — &) (17¢)

kaks (17d)

Vg = e
1+ kE— k2

[kakaks — ki(1 — k3)]ks (17€)

v =
1+ & —kZ(1+ k3 — k3)
. 2 N
o= L Re (17F)

e

For minimizing the {ransmission defect, a class of linkages known as zero-
mean linkages was introduced by Gosselin and Angeles {9]. For zero-mean
linkages, Eq. 16 can be written, in the following form as stated in [10]:

(1 = leakake — ka (1 — ED)]\/(1 + k3 ~ £3)2) A

= 18
4(1 + k& - k) (. )
in which A= 1+ k3 — &2
As well as, for zero-mean linkages: .
koky + kiks = 0 (19)

Furthermore, for zero-mean linkages, full-mobility conditions can be written
in the following form as introduced by [10]:
k<1, k<K ki <kl ‘and K} <Kj (20)

The optimum design problem can be formulated as a nonlinear least-
square minimization under equality constraints. The optimization problem
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:can be stated as mentioned in j[10], as : Finding an approximate solution of
1 (k) = 0,,, such that the objective function 2, as defined below, is minimum:

. % . :
2
‘Meanwhile, the following system of nonlinear constraints should be main-:
tained: ‘ :

2(k) = ~fTWf == miny (21)

glk) =0, (22)
‘In the previous equations, f and g are m- and p-dimensional nonlinear vec-i
tors, respectively. As well as, 0y, and 0, are the m- and p-dimensional zZero -
‘vectors. Furthermore, W is an m x m weighting matrix. Here, QUADMIN:
package [11] can be used for the solution of optimum design problems using
a least-square approach. Now Eq. 14 can be used to define the jth com-
* ‘ponent of f, i.e., f;{k), corresponding to the jth I/O pair, for j = 1,..., m.
Furthermore, a slack variable ks can be introduced to equate Eq. 18 to k2.’
Hence, a new component for f, i.e., fmi1 can be obtained in the following’

form: ‘
P (K) = A{/CA — kokaka — k1 (1 — k2)] — 4k2(1 + &5 — k§)1/<A
where . ‘
¢ =1+ k§~ k2
To minimize &, the constraint below can be imposed:
. fm+2(k) = ks = 0
By the same token fn.43 is defined in the form
fm+3(k) = k4_ =0
'The first constraint corresponding to the first component of g is obtained: -
from Eq. 19 to be:
- g1(k) = koks + kik3z =0
By introducing four slack variables {k;} ¢, the constraints given by Eq. 20
«can be re-expressed in the following form: ' '
gok)=kE—1+k=0
ga(k) = k2 — k¥ +k2=0
ga(k) = k3 — ki + k=0
gs(k) =k — ki +k5 =0
Hence, k, f and g take on the forms:
k= [k, ., k)T ‘
f= [fl: KRR f‘m: fm+1:'fm+2} fm+3]T
L s=lo, kel”

._7_'



Figure 3: Spherical cam Mechanism

4 SYNTHESIS OF (SCPR) TO
GENERATE ELLIPTICAL GEARS
| MOTION |

The synthesis methodology of spherical cams with a pure-rolling (SCPR)
based on the Aronhold- Kennedy Theorem [12] was used. It states that,
when three bodies are in relative motion, the three different instant screw
axes (ISAs) share one common perpendicular. According to the previous
theorem, the ISA of the follower with respect to the cam, when the axes of
rotation of both intersect, passes through the intersection of those two axes
and is coplanar with them. At points located on the ISA, which becomes
now an instant axis of relative rotation, no slip occurs. In [3], the position
vectors rp and ra that define the .cam and follower profiles of a spherical
cam mechanism, as shown in Fig. 3, were found to be

—sinyg sind
ro=wv | —costy sin? (23a)
cos '

and
—sing sin{d — a)

rg=v | —cos¢ sin(d— a) (23h)
ccos (8 — a) .

where v denotes the thickness of the contact surfaces, o is the angle between
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Figure 4: The desired motion of the elliptical gears

intersecting input and output axes and ¥ is computed from:

¢/ sina
tan 29 ¢l cosa—1 (24)

Moreover, the pressure angle can be computed as,

where ¢’ and ¢" are the welocity and acceleration ratios.

5 RESULTS
5.1 Desired Motion

Figure 4 illustrates variables ¢, ¢’ and ¢" of the output elliptical gear of
Fig. 1, with respect to one revolution of the input gear using the numerical
values (¢ = 0.12,4 = 0.105 and d = 0.0619). Now, the crank-crank and
pure-rolling cam mechanisms can be synthesised to generate the previous
variables (¢, ¢’ and ¢”) of the elliptical gears as the desired objective

function.
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Figure 5: The desired motion of the elliptical gears generated by using SCC
mechanism :

5.2 Synthesised Spherical Crank-Crank Mechanism Param-
“eters

The optimum coeflicients k;, for ¢ = 1,2,3,4, of the spherical drag-link
mechanism that were produced using the QUADMIN package [11] were
found to be kq = —0.6243, kg == 0.0052, k3 = 0.00525 and k4 = 0.62435. As
well, the transmission defect § was found to be equal to 0.1.

Figure 5 shows the variables ¢, ¢’ and ¢” of the output of the elliptical
gear and the corresponding synthesised values of the spherical crank-crank
mechanism, with respect to one revolution of the input gear. This figure
illustrates that, the desired ¢ and synthesised one are approximately the
same. But, for ¢’ and ¢", there is a slight difference.

5.3 Synthesised Pure-Rolling Cam Mechanism Parameters

Figure 6 presents a Silicon Graphies solid model of the pure-rolling cam
mechanism to generaté the desired motion of the elliptical gears. Figure 7
shows the pressure angle of the synthesised pure-rolling cam mechanism.
When the pressure angle is smaller than 90 degrees, the force transmis-
sion is from the cam to the follower, which we call positive action (PA). And
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‘Figure 6: Silicon Graphics solid model of Pure-rolling cam mechanism
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when the pressure angle is bigger than 90 degrees, the force transmission
is from the follower to the cam, which is called negative action (NA), (see
Fig. 7). In order to eliminate the occurrence of a negative action, the Pure
Rolling Indexing Clam Mechanisms (PRICAM) which was introduced by [3]

_could be used here.
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6 CONCLUSIONS

In order to circumvent the friction, backlash and accuracy losses problems
occurring when using elliptical gear transmissions, especially with intersect-
ing input output axes, we showed that we can replace them by spherical
crank-crank or pure-rolling cam mechanisms to generate the same desired

motion. _ A
The manufacturing of the spherical crank-crank mechanism is economic,
while the output of the spherical cams with pure-rolling is more accurate

in the desired motion.

6.
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Figure 8: Geometry of spherical four bar-linkage

APPENDIX

6.1 Angular Position of the. Qutput Link of S CC Mechanism

Fixpressions for the angular position of the output link, ¢, are derived here
as functions of the angular position of the input link, #, and the inner

angles, as shown for spherical mechanisms in Fig. 8.
By taking into account that the input link pulls the output link when
the latter moves counterclockwise, the angular position of the output hnk

¢ can be written as

qﬁ—‘ T — 1 — ¢y if OS’I}')'(?T
Tl wEg -y i w<yY <Zx
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Also, by taking into account that the input link pushes the output link
when the latter moves counterclockwise, ¢ becomes:

)= T — by Py i 0<yp <
Y7 w ¢+ s if <4 <o

where the inner angles (¢; < m,4 = 1,2, 3,4), for spherical mechanisms can
be written as shown below: .

F

&, = tan™! (cos ¢ secln cot(g«—)) — tan™?! (sin ¢, cosec (o cot(%))

$o = tan™" (cosg’l sec (o c‘ot(%)) + tan~t (sin (1 cosec (o cot(%))

sin{as — cvq) sin{os — as)
sin{og — s} sin o

$a = 2tan ™t \J

_ sin(o; — aa)sin(os — o
ds = 2tan”?t, (,3 - ) (,s o)
sin(ay ~ aq) sina,
oy = cos_l(cos o) cos @y + sin @ sin aq cos )
cey + oy s g~ (g oy 4 aq
o= DT =T ad =g

6.2 Velocity Ratio ¢'(yp) of SCC Mechanism
By differentiation 6f both sides of Eq. 12 with respect to time, we obtain
dko sin ¢ — Whkaysiny = k4(¢ cosgsiny — ¢sin ¢ cos )
—4 sin ¢ cos ¥ — ¢ cos dsiny (26}
Upon solving for ¢, we get:

kasin® -+ k4 cos ¢psintg — sin ¢ cos

- : : : ) (@7
kosin ¢ — kysin ¢ cosy + cos@siny

and hence, the velocity ratio is the coefficient of ¥ in Eq. 27 above, namely:

(0) = l;g,s%nzb +.if4c?s¢?in¢—siu¢c.os-qb (23)
oSl ¢ — kysin¢ cosy + cos ¢ sin ¢
6.3 Acceleration Ratio ¢”(y) of SCC Mechanism

By differentiation of both sides of Eq. 26 with respect to time, we get:

ko sin ¢ -+ kug® cos ¢ = kmg cos ¢ cos Y — 2k4qi‘:1,[3 sin ¢siny + k&é €Os ¢ cos
+k4g5 singcosy — 2¢1p cos ¢ cos iy + 1/}2 sin ¢ sin v
—Qﬁ(k-g siny + kg sing cos¢ — cos sin )
—d cos ¢ sin g + ¢ sin g sin g + ks ? cos ¢ (29)
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where

kosing — kqsing cosy + cosdsiny
+ [kasing + kysiny cos ¢ — cos ¥ sin ¢)] 0 (30)

and

Py = ¢ ()| ~ky cos ¢ + kycos @ cost -+ sin ¢ sin )
Dy == 2¢/ (¢ }[2k4 8in ¢ siny — 2 cos ¢ cos ¢
iy = ks cost) + kg cospcos ¥ + sin¢siny

The acceleration ratio is the coefficient of 42 in the above equation, namely:

B Py + b+ i3
" kosing — kgsin ¢ cos® + cosgsing

¢ () (31}
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