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ABSTRACT

Oscillation criteria are given for the second order nonlinear differential

equation
(@(Ohy (gly' () + PO f(y (x) = 0
and the generalized Euler-type functional equation
@Xhy ey ) + PEIy@N =0
1. INTRODUCTION

Since the well known papers of Kamenev [4]7 , [5] 1970’s were published, a
great number of papers were devoted to study the oscillatory behavior of second
order differential equations using integral criterion (see for example [9], [10], [12],
{13]. In [1], Chen and Yeh were able to extend Kamenev's results for the second

order differential equation.
@ERYE) +PERIYEND =0 e (1.
Meanwhile, Mahfoud [7] discussed the case of differential functional equation

@Y ) +PEOFGEEN=0 . (1.2)
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which generalize the results on Euler-type delay equation by Opial [8] and
Wong [11]. In this paper we are concerned with oscillatory behavior of sotutions of

the more general differential equations

EERLMyEN g E) + PRI X)=0 . 1.1)

@GO g N + POIFEQEN=0 e (1.2

In section 2, we discuss the oscillatory behaviour of (1.1) using Kamenev's
integral criterial [1], [4). In section 3, we study oscillation results for the functional

differential eqution (1.2). The obtained results extend those of [7], [8] and [1 1]_.

In what follows, we consider oly such solutions which are defined for all x

2 x, 2 0. The oscillatory character is considered in the usual sense, ie., a
continuous real-valued function y defined on [xy, 0], for some Xy 2 0, is called

oscillatory if its set of zeros is unbounded above, otherwise it is called non

oscillatory.

2. Kamenev's integral criteria
Consider the differential equation
@AY ENET N +PETFTEN=0 e (LD

where 2p : [x , «] - R and h, g, f: R — R. We assume that the functions

appearing in (1.1) be sufficiently smooth for a local existence and uniqueness

theoren to hold for (A.Dforxg (xo, 0], We suppose the following hypothesses :

H) a()>0,p(x)>0,f(y(x)>0andh (y (x)) 2c>0forall x 2x,20
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@) [ p o axesisss.

- dy (s) ~ oo
@ | THro T O

The following lemma is needed for our results.

Lemma 2.1 Let the hypothesses Hyp, (Hy), (Hs) and Hy) be satisfied. Define

_a(x)h&)e (y' (X))
W ==y ()

FYx)#0bea nonoscillatory solution of (1.1), then

_EWEOLGOHEO o
VO =[ Tne®ed ®

...............

Proof. By (1.1) and (2.1), it follows that

W RFEEY® _
W GG @ 0

senssessessanes

Integrating (2.3) from X 10 T, we obtain

) W2 PNy _ [
wo-ww [ Tgiseree - kO

Thus by (H2)9
2
fim (W @ + ] W2 (5) £ (¢ 6)) dY () _ g exists and is finite.
T—y00 xa)h(yE) gl 6)
(2.5)
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Now, if (2.2) does not hold, then by (2.5).

W (1)

Too r W2 () £ (y (s)) dy (s)
xa(s)h(y () g ()

=-1

This means that there exists X 2 X, such that for T 2 x,, there exists a positive

constant kl < 1 such that,

W (7) < 1
r W2 () F' (y () dy () X
x a (S) h (S)) g (yl (S)) ............... (.—6)
Thus by (Hy), we have for x; 2 X, ,
Ky' () < f(y@®y (@®
Kf a(®hy @ gy ®) Kf aMh@y@) gy ()
< W2 (D) f (y () y (@) Jz W (s)f(y () dy (5) 12
a(hy@)g ' (1) xta(s)h(y(s) g ' () R 2.7)
i k dy (v) <[ WO f @y ©
X Xl“llc%z? h (yc»)g v xa@hy@g (@)
z W () () dy (s) 2 Z du
[ rorsoeeol esky - @8)
Thus,
_K_ra‘ dy (S) <r° dl<oo
K2 M a@hyE) gl )
This contradicts (H3),
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Remark : The above theorem includes the result of [1] for the case g(y) = y' and
h(y) = y. Moreover, if a (x) = 1 the theorem includes that of Hartmant [3].

Theorem 2.2 : Let the assumption (H;) — (H) and (H) be satsfied.Let

p(x)= ]: P (s) ds, A (x) = exp (-4k L’: ;_(QS)SIS_{)%

Be=[ AG)ds0®= [ S‘.f%l > 0.If g¥) <Y,

BN

Thenoncofthetwocondiﬁons

Cp tim sop ([B 0B+ 2L a9 13 [ p@es/) ===

X—e0 Xs

or
(C im inf[l ¢®) [P +CAE) =" C>0

witha' x)<0and ¢ x)<0
is sufficient for (1.1) to be oscillatory.

Proof. Assume that y (x) # 0, X 2 Xg be a nonoscillatory solution of (1.1). Since

by (2.1) and 2.2).
_a(x) h ) g(y'(x))
WO ="
and
veo=[" W2 (s) f (y(s)) dy (8)
x “a(s) h(y(s)) g¥'()
Then by lemma 2.2

VE) € o e 2.9)
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Now by (2.5) and (2.9), it follows that

limWx) =0
Xseo e 2.10)
Substituting from (2.10) into (2.4) after taking the limits, it follows that,
WE) = VE) +p (X)) e (2.11)

Thus by (Hy) and (2.11) , we obtain

-V (x)=W2 WE W)Y _ fONE+p eIty , K VWP
a (x) h(y(x)) g(y) )y ®) ax)h(y(x)’

Hence,

V(x) < Cexp{-4K {: ;@%‘%ﬁ} “CAR). e Q1)
Now by (Hs), " ,

> (s) dy (s) WEFGEAYE) ¢ oa
| [ ioroosom *krmromeoe - %
1€,
x e W) oy 214
Lo o] SIS <K BX). e 2.14)

By intetgrating by parts, it follows that,

- WY x W2 (s) dy (5)
O S YO RC)

<Ky BG) e (2.15)

(xxo) |7 a (s) h (y(s)) g(y' ()

Thus,

x sW2() dy(®) . .
L‘° a(s)h(yE) gy ) K, <K;B(x) whereK;>0and+Kz>0.
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Now using Schwarz's inequality

. s sWE(E)dy(s) a@h ey 6)
R IR IO I R s A

xa@EhFE)gy 6)
iy . dy (8))  cweeeeem (2.16)

<K+ Ky B @
Thus by (2.11), (2.12) and (2.14), it follows that

X X ! 1
|L(OV(S)dY(S)|S{B(x)+ IMWP

Thus,

x X ' L
[ p@ds1S{B@+Ket kB ). [ 2R () gl (N Ol

<K +K B () a()h(y (s;)) g (7' D 4y (s)

ie.;

X ' -l. X |
(B (B0 + [ 2ORUOE YmN Y Oz [ p sl < Ks

..........

This is a contradiction with (Cl)

Now let the condition (CZ) holds. By (2.11) and (2.13), it follows that,

X ' x h ' d
LO o (s) W (s)dy (&) = Lo o (s)als) ()f/ ((;)zsf)(y (s)) dy (s)

SIOINACALI dy®s[ 0@+p @Iy ®

Since, ¢ (s)a(®h yened (s) is positive, thus by the first mean value theorem,
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Jx 6(s)a@®hy ) g@ ()dy ) _
Xo f(y (s))

S0 ®eONGO Y O LTy forresEsx

=0 ®a®hy@E gr ®) [ &) -0 )l

Butsince a' (x)<0,¢(s)a(s)h(y(s)) g (y' (s)) is nonincreasing. So,

L: LS (z ((;)()S)g) wENs 9 2-0(x)a(xa) h(y Xo)) g (¥ (%0)) O (y (o))

Thus by (2.1), (2.11) and (2.13), it follows that

()2 () B (Y (Ke) £ o) 0 (xe) S| 0D ICAE)+p ] dy ()

—-Pasx7+%
This contradicts (2.18).
3. A generalized Euler's type equation
Consider the differential equation
| @EhEE) g EON+p® I @QE)=0
where 2,p,q : [0, o) = (-0, oo) and h,g.f : (-00,00)—> (-00,00).

We also assume that p,q,h and f are continuous and a is continuously differentiable

with

(a(x)>0,q(x)20andq(s)SxforalleO.

Assume that
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Since by assumption, the R.H.S. of the incouality (3.4) tends to - oo, this is a

contradiction with the assumption y (x) > 0. Thus y' () 2 0 for x = xy. This

means that y (x) = 7 as x— o0, 0 </< . But since by assumption f is continuous,

we have :
fy@E) —f¢) ,asx—>eo

Thus there exists x* 2 x{, such that

£(y @) 2 f‘{’ for x > x*.

Now, multiplying both sides of (1.2) by K (x) and integrating from x5 10 X and

using the inequality (3.,6), we directily obtain

Again the assumption (G (y) 2 Ky' reduces (3.7) to the form

f(/)

[ he @Ohooey o)+t = [ p@peda

using the integration by parts and discarding the nonnegative terms we obtain

Kz pE)p®dsse e (3.8)

for some constant ¢ : 0 and for all x 2 X,. This contradicts (3.1).
The case y (x) < 0 and for all x 2 X,. This contradicts (3.1).

Remark : The specialcaseh (y X)) =1, ¢ (¥) =y" Theorem 3.1 includes theorem
2 of I71. Moreover, the theorem includes theorem B of Opial 18!if q (x) =x.
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lim(h(y)=oo,yf(y)>0fory¢0andg(y')_>.ky',k>0.

yeo

Theorem 2.1 : Suppose that g (y)=ky and

u(x)=r-———d—s———-— -y o0 asx—oo If

o a(s)h(y ()
L’: n (X) p (X) dx =900 e (3-1)

then every bounded solution of (1.2) is oscillatory.

Proof. Assume the contrary that y (x) be a bounded nonoscillatory solution of-

(1.2). Suppose ¥ x)=0forx > x0, xo = 0. now it is clear by (1.2), that

a(x)h(y®) g goyso. T

ie.a)hy)g (y' (X)) is nonincreasing for x 2 Xj. Hence since
gy ) zky &,
It follows that a (x) h (¥ (x)) y' (x) is also non increasing for x 2 Xy.

We first clain that y' (x) =0 for x 2 X;. Suppose that it is false. Then there exists

X2 Xy such that y' () < 0. Consequently

a(i)h(y@)y'(i)=-c , ¢>0 3.3) A
Thus
P Lo« S <
_y Ex) <Yy ®) -c ]‘x‘ a(s)h(y (s) forxzx (.4
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Theorem 3.2 : Let x 2 0. Assume that g (y) =2 Ky', X 2 1 and

o ds :
,L a (s)h (y () °, Suppose that there exists continuously differentiable

functions.
E,m:R* {0} »R*andp : R—> R

such that,

Hy) qx) 2 px) andp'(x) >0 forx2Xandlimp (x) =o°
X—300

Hp) £ 2EGMLE () 2 e>0and limp (x) = oo
X—>o0

N2 () h{y(s))ap(s)
4en (s)p'(s)

(H3) lim sup J; [ps)M(s) - 1ds = oo

Then the equation (1.2) is oscillatory.

Proof. Suppose that there exists a nonoscillatory solution Y (x) > 0 of (1.2) for x
> x0, x0 = 0. Then as in the proof of theoren 3.1, it follows that there exists x1 2
xo such that y (x) is non-decreasing for x = x1. Now choosing x2 > x1 such that p

(x) x1 for x 2 x2, then by (1.2) and the assumptions, it follows that

@EME)sF EN'+pEE(YX)<0forx2x;

Thus by assumption if k = 1, then
@A) g N +pEEFENLO fpr X 2 Xg ceoerrens (3.9
€ (x)

. Multiplying both sides of (3.9) by E(y (p (X)) and integrating from x2 to x, we

obtain
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2 '
[ poon@ds+]; 2 @by OGO

" & (O
-I" aE@hGENYENE) oo 0

w2 E@ (6N

But since by above, the quantity @) h{y @)y ®)is nonincreasing, it follows

by the assumption X 2q (x) for all x > 0 and (H,;) that

ahF )Y ® <a@E)Y P x) x2X

Thus by (Hy), we obtain
X | x a2 2 '
Ixzp ()M () ds + F_L a2 (s)h(y (S))>; M Ep© ds
: a(pGENE PG
) Jx a@®hyE)y En' @) ds< c
w2 FZCIO))
ie.,

x x a(pE)hyEn2E)
LZ p()M ) ds-sz T ®0 O ds
N NEPOYE) a®y )  2@ENME2 o0

€, a(p(s) E (v (p () 2¢ep' ()M (8)°
Since the last integral in (3.10) is nonnegative,
a(p () h(ys)n? ©) gs <c

4¢en (s) p'(s)

. This is a contradiction with-the assumption (Ha). The case y (x) < 0 for x 2 x, is

S JOLYOK

similar and the proof is completed.

Remark: 1-If(n () =x,ax)=Lz()=y,e= 1 and r (x) = cx. Then the above

e
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theorem includes theorem (A) of Wong 1111

2- In a recent paper of Lalli I61, an oscillation criteria was given for the differential

equation (1.2) but the condition considered there,

e ==

is slightly stronger than ours.

3- The functional equation considered by Grace and Lalli 12! is much different from

ours.
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