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ABSTRACT

This work is concerned with the inverse analysis of estimating
two dimensional steady state temperature distribution In a hollow
cylinder wall invelving uniform internal heat generation, by
utilizing the ayaal distribution of temperature and that of heat
flux at the ocuiside surface of the cylinder; both are functiens of
the axial coordinate. Different wversion of the solution has also
been found by utilizing the corresponding two boundary conditions
specified al the inner surface of the bhollow cylinder. Exactness and
validity of tLhe present solution have been checked up by comparison
with exact solutions. The general seolution is capable to accommodate
boundary conditions data of sharp axial variation., The method may
also be of a considerable practical interest., however, for some
steady heat transfer ilnvestigations using a circular test tuvhe,

1. INTRODUCTION

In heat tramsfer studies surface temperature and heat flux are
important quantities which should accurately be estimated.
Therefore, in some steady heat transfer experiments using a circular
test tulfe with significant axial wvariation in wall temperature
and/or heat flux due to the nature of the investigated phenomenon,
it may be necessary to estimate the 2~dimensional temperature field
of the tube wall in order te evaluate accurately the axial
distributien of hesat flux, and temperature at the inner tube
surface Cthe effective heat ftransfer surfaced, however, from only
soms corresponding measurements at  Lhe outer zurface. This problem
is nol considered a classical boundary value problem characterizing
by 4 boundary conditions: with 2 for each coordinate, however, LU is
identified as inverse problem in heat conduction literatures {(11].
The inverse problems are classified teo steady and transient
proplems [2].

In recent years, Lhere has been c¢onsiderable interest in the
solution of transient inverse problems. Most of Lhose studies have

been performed numesricalliy Ce g, [3-5Sl). while the analytic ones
e g. (5,81 were scarce  and usually restricted to  the
one-dimensional c¢caze due to difficulty of a mult:-dimensional

solutionn (H.9]).
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In our previous work [(1C]l, steady-state, two—-dimensicnal, heat
conduction problem from Lhe inverse Lype has been analyzed for a
hollow cylinder wall, by following a =imilar way to the analysi= of
an inverse problem of transient, one-dimensional heat conduction
derived by Burggraf [7)] for- a hollow cylinder in time and radial
coordinates. The similarity between the Lwo analyzexz lies mainly 1in
that the axial wvariable in the steady seolution plays the role of
the time variable 1n tLthe transient problem solution.

However, it is important te point out that our previous soclution
(10) i= not appropriate to treat this kind of the inverse problems,
if there is heat generation in the cylinder wall. Furthermore, it is
limited to thé case of being the two boundary conditions, required
for the solution, are specified at the cuter surface of the hollow
cylinder. Therefore, the main goal of the present paper is to
estimate the two-dimensional steady-state tLemperature filed eof a
hellow cylinder wall invel ving internal heat generation, by
utilizing the axial distributions of temperaiure and heat flux at
the ocuter or the inner surface of Lhe cvylinder; both are given as
continuous functions of the axial ccoordinate.

2. ANALYSIS

Figure 1 describes an inverse problem of steady heat conduction
with i1ntermnal heat generation in a hollow cylinder wall. This type
of the inverse problems 1s characterized by twe boundary conditions:
the temperature and the radial heat flux; both are specified at the
outer surface (cf, Fig. 1ad or at the inner =zurface (cf, Fig. 1bo
as known continuous and differentiable functions of Lhe axial
coordinate y. The boundary conditions at the {wo radial planes Cr,00
and Cr.,LY are unknown. Qur main goal is Lo evaluate the C(r,y> field
of temperature 1n the cylinder wall.
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Fig. 1 Problem description

2.1 ANALYSIS OF PROBLEM Ciad

If uniform internal heat gensration and constant thermal

cenductivity are assumed, problem Ciad may be modeled by
&°T 1 ar  8°T g

— e %:o; TCr _.y>=T_CyD, q Cr ,yd=q C£yd. €12
ar o Ay roe “
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where TOCyD and QOCy) are the temperature and radial heat flux at

the outer surface. respectively, which should be known continucus
and differentiable functions of the axial coeoordinate y in the
interval: 0 £ yv £ L. g is the volumetric heat generation rate.

By the superposition principle, the solution of problem (12 may
be assumed Lo be

TCr.y> = wWr,yd + ¢lrd, =p
such that #&r> satisfies the one-dimensional problem :

2

[n%
vlg

E 3
+L1d¢ . a . o, Mr ) = 0, dé| - o, c3
rdl’“ "4 o

2 2 q Cy?
"‘*’+i_2“’_+""’=o, wCr Ly) = T Cyd, g;"’=-°k C4d
éhrz ar ayz o o "

The solution of problem (32 is found te be

* 2
qr _
¢<rd= °[1 —C:—-)z-rlnC:-_—-Dz]. ¢Sy
(=]

4k

o

Howsver, the seolution of problem (42 can be obtained by following
,analysis procedurse parallel to that presented in refesrence (11].
This solution is found as

© 2 had z
r i, a“"T ¢y 1 d“"q Cyd
w(r,y)=[‘1'°(y) —E°J.nCF—)q°CyJ]+ A Cr> -7‘—3—-«» © B < __2:9___ CBad
& oy dy
n=4 n= 1

where AnCr) and BnCr) are r-~dependent functions. The leading terms

of AnCr) are ;

2
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and that of an'.r) are ; {

B Cr) = -r 1nCd,
Q < r
[=]
3
r r.z r.z r
t [=] [«3 (=1
=
"o 3 3.r. 4 r.z,.r.4 r
BzCI‘D = —6_4— [é- - ECFD "‘(1"‘4(;) +CF) )lnC;)]
o o o o r CBc
07
- o (11 1.r.2_ 1. r.«¢ _ 11 .r.o
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Combining Eqs. (22, (30 and (&> gives Lhe temperature field

* 2
r ar
_ _ e r_ ol T _~2 r_.2
TCr,y)—[TQCy) K lnCr qu('y)]+ ik [1 Cr 27+ lnCp D ] +
k=] [=] o
had Zn i 2
T Cyy d®*"q cy>
A CP) hid + =3B Cr> —2 €73
n 2 k n Zn
dy dy
n=1 [a TS §

It 1s impertant to note from the right-hand side of Egq. (72 that
the terms inside the brackets represent a steady, one-dimensional
solution in the radial direction. The effect of Lwo-dimensional heat
transfer is included in the remaining terms. IL 1= also important to
state that in carrying cocut the analysis, no reference was made to
the axial-boundary conditions at the two planes (r,0) and C(r,LD.
However, this omissicon 1s nc cause for concern. Becauzse of the
smootn nature of the linear governing differential equation, the
temperature distribution TCr,02 and T(r,L} is unigquely specified
when the temperature and its exterior radial derivatives outside
the surface of the cylinder are known in the interval : O £ y = L .

2.2 ANALYSIS OF PROBLEM C1b)
If the two boundary conditions used in Lhe above analysis are

prescribed at the inner surface of the hollow cylinder instead of
the outer surface, a= it is shown in Fig. 1b, the soclution becomes

.z
r. qr .
_ ok r_ fa_ o1 .2 r .2
TCr.y)—[TiCy) . lncrl}qt(ﬁy)]+ i [1 crl) + 1nCi-d ] +
L
o ” @ )
d* T Cyd L a*"q cy>
f Cr) —> + = Vg Cr) —2 cgad
n zZn k n Zn
dy dy
n= 1 =4

wher e TLCy) = TCrL.y) and gdCy> = qurl.y) are the inner surface
L

temperature and heat flux, respectively, which should be known
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continuous and differentiavie functions of the axial coordinate y.
The leading terms of the r-dependent coefflcients fnCr) are

[
f Crd= 1, f Crd = =" [1 G, alnc“—-)]
< 1 4 [l r.

13 1Y
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3. TEST EXAMPLE aND DISCUSSION

In the above section., general solution for the stated inverse
problem Mas been derived. At this point it is informative Lo
consider test problems having known exact solutions in order to
prove validity of the proposed solution as well Lo bring tLhe
features of the method in more detail. Since tLthere is no another
method available to solve this kind of the dealt inverse problems.
therafeore, no such a typical inverse problem wilth known exact
solution is available Lo us Lo be used as tLest problem. Therefore,
wa will construct a direct problem and then find its exact solution
which  will be used to  construct an inverse test problem
corresponding to the dealt problem! -

As Tirst step to perform this task, we set Lhe direct problem :
Consider a hollow cylinder of consitant thermal conductlivity and
invelving uniform internal heat generation. The outer surface is
exposaed to heat losses of constant heat lux q,- while the i1nner

surface temporature proflle is given by TCr , ¥y3 = Tg- Tb coOsStwyl,
L3

w = a4 L. The cylinder wall are rnsulated at both axial ends.
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The solution of the above problem, derived in Appendix CID, 1is
* 2
r r~ aqr r r r

q .
- _ o o _t < . 2_ — z _» 2
Ttr,y)—Tq Tbcosty) DCwrd+ P l.nCP )+IF [lnCr b} Cr b +Cr 2 ] 93

L k=1 (=]

where a ig the wvolumetric heat generation rate, and Kwr2 is
r-dependent function defined by Eq. (i8> in Appendix CIY.

Now, with help of the above exact solution we construct the
following inverse problem :

q (y) = g <(constanid €10ad
[=] o

TQCy) = TCra,yD. Ccalculated by Egq. (9) with r = r°) C10b)

The above inverse problem is corresponding to problem (1a). The

general sclution, given by Egq. (6a), under the boundary conditions
C10a, b)Y becomes

N
rq . ar* . - A" TCr L yd
Ttr,y)=[Ttr Lyd- 2 °1nc->]+—ﬁ°[1—c_> +1nC o) ]+ ACr) — 2 c11)
o k r 4k ™ r "~ Zm
o = o dy
n=l

where N is the upper limit number of the Lruncated series, which 13
integer number £ 4. The terms of AhCn) are given by Eg. (8b). The

outer surface temperature and its y derivatives are calculated by
Eg. (8); with r = r,

For purpocse of Gthe method testing, we will compare present
solution results, calculated by Egq. (11>, with the corresponding
aexact result=sz from Eg. (9. Examples of such comparizons {for radial
distribution of temperature, and radial heat flux are presented in
Figs. 2a and 3a, respectively. The data used in these comparisons
are : r\=.01 m, ro/rl=2. L/ro=& qur;=qD=?0 kW/mz. k=0, 38

kW Cmk>, T _=200°C, T, =200°C and 3= 4.9 x10° Wom®

It is evident frem Figs. 2a and 3a that the preseni results of
N=i for radial profiles of temperature and radial heat flux,
respectively, Crepresented by symbols in  graphs) have =small
deviationg f{rom the corresponding exact results C(full lines). It is
more evident in Figs. 2b and 3b that the relative error in the
prezsent results is zero at the input-data boundary surface (ie, the
outer surfaced and increases with distance therefrom to reach
maximum value at the inner surface. IL is also noted that the error
in the heat flux results are greater Lhan that in the temperature
results. However, the present results with N=2 in =g. C11) are very
accurate and indistinguishable from the exact solution; both are
indicated by full lines in Figs. 2a and 3a.

From the notion that the accuracy of present solution results of
N=1 decreases with distance from the outer boundary surface (ef,
Figs. 2b and 3b), one may deduce that the geometric dimensions of
Lhe cylinder have an effect on the accuracy of the present solution
of a truncated zeries.
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To investigate the effect of the geometric dimensions of the
hollow cylinder on the accuracy of the present solution, resuits
with N=1 and N=2 are presented in Figs. 4a and 4b. respectively
These results are pletted in terms of the maximum absolute error in
temperatures, calculated by Eg. <112, versu=s tLhe radius ratio ro/rt;

for three different values of the dimensionless length L/ro. Figure
4a displays that for long cylinders CL./ro > 82 of thick or thin

wall, the selution of truncated series of N=1 is adequate, but not
appropriate for thick-walled short cylinders with L/r° = 2.

Howewver, with increasing'number of terms in the truncated series
from N=1 to N=2, the error rapidly dimensions to be insignificant
Cef, Fig. 4b3 " for shert and long cylinders of radius ratio r/ros 3

The results in Figs. 4a and 4b are calculated using the same data
set used {for Figs. 2 and 3.

Figure Sa shows comparison of exact and present results for two
axial temperature profiles with low, and steep axial wvariation
introduced i1n the graphs by case 1 and case 2, respectively. It is

clear that the present resulis of N = 2 for both cases are very
exact and indistinguishable from the corresponding exact results
Cfull lines>. However. the accuracy of the present results of N = 1

in case 2 1= lower than that in case 1. as 1L is clear in Firg.
Bb. This proves that bLhe present method is capable to accommodate
boundary conditions funcLtions of sharp axial variation.

Here. it is important to point oul that the present method may
be of a considerable practical interest. however. Lo some steady
heat transfer experimenti=s using a circular test tube with
significant axial wvariation 1n wall temperature andsor heat rlux
owing Lo the nature of the studied phenomenon. In many of such
experiments, 1L 1= desirable te estimats Lthe Z-dimensiocnal
temperature field of tube wall in order to calculate accurately the
heat flux and temperature at the inner Lube surface from only some

corresponding measuraments at the outer surface, For this task,
the present approach may be used, however, if tLwo boundary
conditions at the ocuter surfacg of the tube, gained rom the

measuremaents, fall 1n one of the following classifications

al) the axial distribution of temperature and that of heat flux
cutside the tube surface are known.

b2 convective heating or cooling of constant heat transfer
coefficient at the outer surface of temperature varies with the
axial location.

<) insulated surface of known axdal temperature profile.

d) isothermal surface of known axial heat flux distribution.

Case Cad represents the general feature of the dealt problem of Filg.
la, as well indirectly is caze (b2, whereas case (¢l and case Cdd
bring out the preoblem in simplified faatures.

However, in such a practical situation the measured data are not
given by such convenient analytical expressions used iIn Lhe
theoretical treatment. but as data measured at some different axial
locations. Therefore, it is customary to represent Lhese data
analytically by a fit formula Cas polynomiald using the method of
least sgquares. Then, this fit formula can be used Lo calculate the
axial ~derivative terms i1n the series of the solution. An alternative
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To investigate the effect of tLthe geomelric dimensions of tLhe
hellow cylinder on the accuracy of the present solution. results
with N=1 and M=2 are presented in Figs. 4a and 4b, respectively
These results are plotted in terms of Lhe maximum absolute error in
temperatures, calculated by Eg. (113, versus the radius ratio ro/ri;

for three different valuegs of the dimensienless length L/ro. Figure
4a displays that for long cylinders CL/ro z 82 of tLhick or thin

wall, the sclution of truncated series of N=1 is adequate, but not
appropriate for thick-walled short cylinders with L/ro = 2.

However, with increasing number of terms in the truncated series

from N=1 to N=2, the error rapidly dimensions to be insignificant

Ccf, Fig. 4b) " for short and long cylinders of radius ratio r.r = 3
o

The results 1n Flgs. 4a and 4b are calculated using the same data
set used feor Figs. 2 and 3.

Figure Sa shows comparison of exact and present results for two
axial temperature profiles with low, and steep axial wvariration
introduced 1n the graphs by case 1 and case &2, respectively. It is

clear that the present results aof N = 2 for beoth cases are very
exact and indistinguishable from the corresponding exact results
Cfull lines>. However, the accuracy of the present results of N = 1

in case 2 1is lower than that in case 1. as it is clear 1n Fig.
5b. This proves that Lhe present method 13 capable te accommodate
boundary conditions functions of sharp axial variation.

Here. it 1i1s important to point out that the present method may
be of 2 considerable practical i1nterest. however, to zome steady
heat transfer experiment=s using a circular test tube - with
significant axial wvartation in wall temperature and~sor heat flux
owing Lo the nature of the studied phenomenon. In many of such
exXperiments, 1L is desirable Lo eztimate the 2-dimensional
temperature field of tube wall in order to calculate accurately the
heat flux and temperature at Lhe inner tube surface from only some

corresponding measurements at the cuter =surface. For this task,
Lthe present approach may be used, however, 1if Lwo boundary
conditions at the outer surface of Lhe Lube, gained from Lhe

measurements. fall 1n one of the fellowing classifications

a) the axial distiribution of temperature and that of heat flux
outside the tube surface are known.

b) convective heating or cooling of constant heat. transfer
coefficient at the ocuter surface of temperature varies with the
axial location.

¢l insulated surface of known axdial temperature profile.

d) iseothermal surface of known axial heat flux distribution,

Case (al) represents the general feature of the dealt problem of Fig.
la, as well indirectly is case (b)), whereas case (c) and case {dd
bring out the problem in simplified features.

However. in such a practical situation the measured data are not
given by such convenient analytical expressions used in the
theoretical treatment, but as data measured at some different axial
locations. Therefore, it is customary +to represgnt Lhese data
analytically by a fit formula Cas polynomrald using the method of
least sgquares. Then, this it formula can be used Lo calculate Lhe
axial —derivative terms 1n ths series of Lthe solution. An alternative
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way i3z to calculate these derivatives numerically diresct from
measured data interpolated at discrete axial points by an
interpolating procedure such as Spline procedure. Thus, the axial
temperature derivatives at a certain axial peint on the couter tube
surface can be approximated numerically ([10}. This numerical
calculation of the derivative terms has the advantage that the
magnitude of the highest derivative retained in the series of the
soiutlon may be monitored. Thus a check on the validity of the
truncated-series solution is available [121.

4, MAIN POINTS

]

i- The prerequigites for the theoretical application of the melhod
are that the axial distribution for each the temperature and heat
flux at the outer or the inner surface of a hollow cylinder are
known continuocus and differentiable functions of the
axial coordinate.

2- The solution is explicit, exact and capable to accommodate
boundary conditions data of sharp axlal variation.

3- The effect of internal heat generation is exactly modeled.

4— The accuracy of a truncated-series solution depends on the
geometric dimensions ratio, number of terms in the truncated
series and the axdal variation degree in the utilized
boundary data.

5- The method may also be considered of a practical linterest.

APPENDIX C(I>

With reference to the geometry and coordinates system of Fig. 1.
the direcl problem, presented in section 3, can be described by

2z z -
8T 1 T
— + = QI -+ ET+ %: e} 122D
ar ar ay
q
aT . _ e _
EFiro = < c1a2b>, TCri,yD = Ta Tb cos Cwyd. Cl12c)
aT
= = o, ¢i2d>, g% = o. Cized
y=Q y=L
where '1"G and Tb are known constant temperatures, and w = n-L.

By the principle of superposition, solution of problem (12) may be
assumed

TCr,y> = @,Cr,y> + § (rd 13

Here, C;Cr) ls assumed to satisfy the one—-dimensional problem

f+] @1 1 d@1 a dei q
« L + 2 = 0, _— = - _% @ Cr > = 0, CLad
drz r dr k dr Ir k i b

The solution of tLhe above problem is
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e@L{r> = in Cr std> + 2] In Cror 2% - ¢ 3% ¢r o 3%
) k i ak i o L o

From combining Eqs. (12)-(14), we fined @zCr.y) iz satisfied by

e, 1 o0 &Fo

—._2 + — _2 -+ 2 = 0,

or T oer ay*

%0,

F -, =0 C16bk), @2Crt.y) = Tﬂ— T£ cos Cwyd
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The solution of the above preoblem can be obtained by applyving the

method of variables separation (12}, which is

@zCr.y) =T;- K) cos Cwy) DXord
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Combining Eqz, €132, (15) and (17} gives Lhe Lemperaturs field
-
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NOMENCLATURE
B{ BZ.C‘, C2 constants, dimensionless
Io’ I1 modified Bessel functilons of the

first. kind, dimensionless o
k thermal conductivity, k¥ {m C
k modified Bessel functions of

the second kind, dimensionless
L cylinder length, m
q heat lux, k¥W-m
q radial heat flux at the outer surface

2
C—qura.yJD. k¥ m

q.Cy? radial heat flux at the inner surface
C=qPCrl,y)), kWom®

N the upper limit number of the
t.runcated series, dimensionless

r radial coordinate, m

T outer cylinder radius, m
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r inner cylinder radius, m
L
A (r), € Crd>  r-dependent cosfficlents, ar
B {rd), g <r2 r~dependent. coefficients, m2"Tt
n sl
T Lemperature? C o
T Tb constant temperatures, C
>
TOCy) outer surface temperature C=TCro, y)J,QC
T.Cy2 inner surface temperature C=T(rt, y)).°C
L

Y axial coordinate, m

a volumetric heat generation rate, kW/m3

SUBSCRIPTS:

a ) cuter surface

L inner surface

r radial direction

¥ axial direction
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