Mansoura Engineering Journal, (MEJ), Vol. 32, No. 2, June 2007, E. 34
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Abstract: Among many applicd techniques tor overhead transmission line fault recognition, the artificial neural
networks-aided schemes have demonstrated superior efficacy. This paper presenis two methods based on time domain
measurements at local end of the transmission ling to identify the single ¢ircuit line fault type for fow impedance faults. The
first deals with time samples of the current and voltage waveforms of the three phases during the fautt. The second uses the
measured rms values of currents and voliages. The later can alse deterrmine the fault tocation on the line. It is also extended
to produce the faulty circuit and fault type of double circuit lines for low impedance faults, Furthermore, the paper proposes
a new algorithm for diagnosing the single linc high impedance fault. A modified version of the algorithm is alse developed
to obtain a good representative feature vector with the Jeast possible elements. The modification has enhanced diagnosing
capabilities and can classify the high impedance faulis. This enables the fast and accurate recognition of the faults that is a
necessary request for the digital relaying sysiem. The design and training of the decision making ANN  for cach approach
are described. The studied techniques are tested wilh many cascs to assess their diagnostic capabilities. Besides, the
performance of the competitive methods is compared.

1. Introduction the power system goes into a transient period
through which precise measurement of current
and voltage is a tedious task [3-7].

Artificial neural networks is an apt pattern
recognition too! that can distinguish between
healthy and faulty states in a power system.
Also, it is capable of discriminating the fauity
phases (phase selection). ANN has many desired
features like generalisation  ability, noise
rejection, robustness, high calculation speed,
and error tolerance. Accordingly, decisions
made by the ANN-based fault selector are not
notably influenced by power system parameter
variation or measurement noise [6-8]. Hence,

Fast fault detection and equipment isolation
is inevitable to maintain power system stability.
Faults on transmission lines (TL) need to be
detected rapidly, identified correctly and
cleared in the shortest time. Transmission line
fault detection module is essential to control
other relaying moduies [1-4]. The required
detection technique should be adaptable to
power sysiem parameters and operating
conditions  variation. Conventional  fault
detectors require correct magnitudes of the
current and voltage signals. When a fault occurs
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ANN-supported  transmission  line  fault
identification scheme is much advantageous.

In [2], a method is presented for TL fault
detection and phase selection using ANN. The
method uses current signals with zero and
negative sequence currents 1o train an ANN. In
[3], ANN is used to recognize the cause of fault
in power distribution systems based on available
field data collected for outages. In [6], a system
is presented to locate faults on TL. Prony
method is used to analyze the current and/or
voltage signal at the local bus and extract its
modal information. ANN is used to estimate the
fault location based on the modal information.
Different ANN structures are compared in [7] to
search the best ANN structure for TL low
impedance fault classification in single and
double circuit transmission Jines. Both pre-fault
and post-fault current and voltage measurements
are needed to construct the classifier.

ANN is applied to detect incipient high
impedance fault (HIV) on power distribution
feeders. The current samples used to train the
ANN are separated into sets of one cycle
interval. 20 mixed time and frequency domain
parameters are laken to express each cycle in
[8]. A numerical algorithm for arcing Ffaults
detection and locating is provided in [9]. It is
based on the processing of time-domain local
end currents and voltages signals. in {10], HIF
detection method based on adaptive neuro-fuzzy
inference system (ANFIS) is reported. The
feature vector is obtained by dividing each
current cycle into four windows and applying
Fourier transform to each window. Other
method for HIF detection is reported in [11]
using waveltets and ANN. Most of the
aforementioned approaches rely on lengthy and
complex mathematical signal processing
techniques to extract the feature vector. Some of
them requires various currents and voltages
measurements. This involves heavy computation
burden and slows down the diagnosis process.

In this paper, three ANN-assisted schemes
for identifying the single and double-circuit TL
faults are presented. Time domain —based data

processing of the local end measurements is
used to get the dominant characteristics in each
fault type. This is an imperative step to the
precise identification of the fault and also its
location on the line. Furthermore, the paper
proposes new alporithms for detecting and
diagnosing the single line HIF. Simplified
methods for obtaining a pood representative
feature vector with the least possible elements
are addressed.  This enables the fast and
accurate recognition of the faults at much
reduced computational burden. The design and
training of the decision making ANN that maps
the feature vector space into the fault class and
location spaces are described. The studied
techniques are compared to assess their
diagnostic capabilities.

2. Low Impedance Fauits

2.1 Single circuit transmission line

Two appreaches are used to identify faults of
the single circuit TL. They are described in the
following:

a) Using time samples of voltages and currents

The three-phase line to ground voltages and
the three-phase currents of the faulted line are
measured at the local end sampled at a
frequency of 500 Hz. This results in 10 samples
for each fundamental cycle. Five synchronised
samples of each of the pointed out 6 waveforms
are employed as the input vector discriminating
the fault [1, 2]. They are combined sequentialiy

in the order V,. Vi . V..ia.ip andic. Thus

forming a vector of 30 elements length (5
samples x 6 waveforms). This is the input vector
introduced to the ANN classifier. Owing to a
short time interval is involved in the input vector
(half a cycle), the fault can be detected and
categorized in about half a cycle that is fast
enough for protection purposes.

400 fault situations were performed to the
model power system of Fig.1 including 220 km,
220kV TL for the different possible 10 fault
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Fig.1 Model system with single circuit line

types formed by the A, B, C phases and the
ground G (A-G. B-G, C-G, A-B, B-C, A-C, A-
B-G, B-C-G, A-C-G, A-B-C-G). Different fault
locations. fault incident angle and pre-fauit
.conditions were assumed for cach simulation
case.  Simulations  were  done  using
PSCAD/EMTDC software [12]. Fig.2 reveals
the waveforms of two sample faults at 165km
from the local end. The ANN classifier is
designed and trained in the MATLAB
environment [13, 14]. lts best structure is found
to be composed of 4-layer feedforward ncural
network {(FFNN) having one input layer of 30
neurons. iwo hidden layers of 35 and 20 neurons
respectively. and an output layer of ane ncuron.
The activation fuaction of the hidden layers
neurons are selected as hyperbolic tangeni
whereas that of the output layer is chosen to be
linear (14]. The output of the classifier is a
number from | to 10 referring (o the fault class
directly. The ANN classifier is trained with 400
training examples using a variely of competing
algorithms as given in Table 1. The Levenberg-
Marquardt (LM) training algorithm [14] is found
to give the least (raining error of about
0.00000347  in 14 raiming epochs that is
considered 10 be accurate enough. All the
training examples are successfully recognised
when approximating the ANN output to the
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Fig. 2 Waveforms of two sample faults
{a). (c) current and voltage of phase a for A-G fault.
(b, (d) current and voltage of phase a for A-B fault.

nearest integer. The ANN classifier is tested
with 20 different fault paticrns and the
classification efficiency was about 98%. Test
results for a previously unseen 10 faults are
given in Table 2.

h) Using rms values of voltages and currents

This method is based on measuring the rms
values of the three phases voltages and flowing
three phase currents at the local end of the line.
The characterising vector consisis of 6 elements
(rms values). 2000 training examples are
obtained by simulating the transmission system
of Fig.l in the PSCAD environment under
different conditions such as fault type, fault
location, fault incidence angle, and pre-fault
current. The utilised ANN classifier is
constructed in MATLAB. 1t is a 3 layer FFNN
with 6 input ncurons, 20 hidden neurons and 2
outputs. The first output is the fault type

Table 1. Performance of different training methods

[
Levenbere- | Gradient Adaptive | Resiliem Fletcher ] Scaled One Polack
Method 5 © learning back conjugate | conjugate | step | conjugate
Marquardl | descent . h . .
rate propagation | gradient | gradient | secant | gradient
}f,pochs 14 300 300 45 75 300 | 300 110
error 00003 2578 0221 8.25 0133 00073 | 2.15 | G128
- ] Table 2. Testing results for samples method
T':a;: AG | BG | G | A-B | AC | BC | ABG|ACG | BCG | AB-CG
AT 998 1.99 2.998 31.99 5.00F | 6.0052 7 799 9.005 10.004
autput
target 1 2 3 4 5 6 7 8 9 10




E. 37 A. Elmitwally

expressed in the decimal form (from 1 to 10) for
the 10 known faults. The secend is the distance
at which the fault takes place measured from the
local end of the line in km. The transfer function
of the hidden neurons is hyperbolic tangent and
that of the output laver is linear. The ANN is
trained with the levenberg-Marquardt (LM)
method and has attained a training error of
0.0978 in 1000 training epochs[14]. This has
been sufficient for the ANN to recognize the
whole (raining set with [100% cfficiency.
Moreover. it has been able to identify 22 testing
cases with accuracy 100% in detecting varying
fault classes and its locations on the TL. It is
worthy mentioning that no other training
algorithms of the adopted ANN classifier has
been able to give satisfactory performance.
Tabte 3 shows the outcomes of testing the ANN
for faults at 45 km from the local end. The
provided excellent results assures the efficacy of
this simple and light computational burden
mcthod.

the MATLAB/SIMULINK environment under
different conditions such as faulty circuit, fault
type, fault location, fault incidence angle, and
pre-fault current {13}, The utilised ANN
classifier is constructed in MATLAB. It isa 3
layer FFNN with 9 input neurons, 20 hidden
neurons and 2 outputs. The first output is the
fault type expressed in the decimal form (from |
to 10) for the 10 known faults. The second is the
faulty line assuming only one fault occurs a* a
time. The transfer function of the hidden
neurons is hyperbolic tangent and that of the
output layer is linear. The ANN is trained with
the Levenberg- Marquardt method and has
attained a training error of 0.098 in 1000
training epochs[14]. This has been sufficient for
the ANN to recognize the whole training set
with100% efficiency. Moreover, it has been
able to identify 22 testing cases with accuracy
98% in detecting varying fault classes for both
CIrcuits.

Table 3. Testing results for rms method

f::l‘ AG B-G c-G A-B AC B-C A-B-G A-C-G B-C-G A-B-C-G
ANN ] |

1| 448 | 2| 4503 | 3] 449 |4 as2 | s| 45010 [ 6| 449 | 7] 4az |sg| 52 [9| a5 | 10 | asm
ouiput [ |
warget | || 45 | 2| 45 | 3] 45 | 4] 45 | 5| 6] a5 7] as [8] 45 J9of 45 10 45

~Table 4. Testing results for double circuit line

':)‘f;i' AG 8-G -G AR AC f.C ABG | ACG | BCG | ABCG
ANN o | v f 203 | 1 | 298 | 1 | a0 | 1] 503 ses |1 | ru i sis ] [ ooz |1 | 998 |
oultput
target | | 2 I k] | 4 | 5 [ ! 7 I & 1 < I 1 1

2.2 Double circuit transmission line

A method is presented to identify the faulty
circuit as well as the fault type in double circuit
overhead transmission lines. The method is
based on measuring the rms values of the three
phases voliages at the local end and the flowing
three phase currents for the two lines. This
produces a characterising vecior of 9 elements
(rms wvalues). 2000 training examples are
obtained by simulating the 220kV, 200km
double-circuit transmission system of Fig.3 in

'
Y

Table 4 shows the outcomes of testing the ANN.
The provided exceilent results assures the
efficacy of this light computational burden
method compared to other techniques [1, 6].

Local end far end

Circuit )

Fig.3 Model system with double circuit line
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3. Detection of high impedance fault

3.1 The proposed algorithm
An ANN classifier is applied to discriminate

faults occurring through high impedance in TL.
It is a tedious task as the current and voliage
waveforms are similar to their normal operation
conditions for these ftypes of faults. An
adequate feature vector capable ol poriraying
the fault characteristics is a key point to achieve
the target. This vector is the input to the well-
formed ANN classifier to detect the HIF. An
algorithm is proposed in this paper to obtain an
identifying feature vector as follows.

a) The instantaneous three-phase currents of the
faulted line are measured at the local end
sampled at a frequency of 500 Hz. This results
in 10 samples for each fundamental cycle. 20
synchronised samples of each of the
mentioned 3 waveforms {(iwo fundamenial
cycles) are employed as the first part in the
input vector discriminating the fault. They are

combined sequentially in the order 1, .1,

and L. forming a veclor of 60 elements length

(20 samples x 3 waveforms).

b)For each 20 samples in the former vector
corresponding to (1, ,1p and 1., respectively)
additional four values are estimated. The first
is the mean square value that expresses the
fault signal power. The second is the
arithmetic mean value that represents the
mean value of the decaying de component
characterising HIF curcent signals [6, 10]. The
third is the maximum vailue that is the peak
positive instanlaneous fault current. The fourth
is the minimum value that is the peak negative
instantanecus fauit current. This introduces
another 12 elements (4 elements for each of
the three phases).

¢) The latter 12 elements are associated with the
former 60 elements in the same order (a, b,
and c) to give the overall input vector of 72
elements. This is the input vector introduced to
the ANN classifier. However, the additional
estimated 12 elements can be utilised alone to

design an alternative ANN classifier scheme
as described below in section 3.3.

3.2 Training the classifier

957 fault situations were performed to the
model power system of Fig.l for the different
possible 0 fault types stated earlier. Different
fault impedance, fault locations and pre-fault
currents were assumed for each simulation case
to obtain a sufficient training examples for the
ANN classifier. A fault resistance of zere and
2000 ohms are considered as representatives 10
the low impedance fault (LIF) and the HIF
conditions, respectively {6, 7]. This does not
affect the generalization capability of the
classifier as will be seen in the next sections.
The adopted ANN classifier is able to detect
faults on the TL taking place at different fault
impedance values. Simulations were done using
EMTDC/PSCAD sofiware [12]). Fig.4 reveals
the waveforms of two sample HIF faults at
165km from the local end and at 1000 ohms
faull resistance.
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Fig. 4 Waveforms of two sample HIF faults
(a), (c) current and voltage of phase a for A-G fault.
{b), {d) current and voltage of phase a for A-B faull.

Three three-layer FFNNs ANNI, ANN2 and
ANN3 are designed in the Matlab environment.
ANNI detects whether the fault is LIF or HIF
for any fault resistance. It has 5 neurons in the
hidden layer and | output ncuron. ANN2
determines the fault location on the transmission
line for the case of 2000 and zero ohms fault
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Fig, 5. (a) Control algorithm of a single phase UPFC and (b} PWM subsystem

The outpnt of serics converier is the input of
series  transformer  {boosling (ransloriner)
which adds a series injected vallaze 10 the
mid-point voltage. Elements of the system
are found in the Appendix.

5. PERFORMANCE OF UPFC

The UPKC is lested on laboratory for both
shunt and series converters, The test results
are shown in figures (6 — 15}, and the values
of all the quantities shown in these figures arc
given for two cases, Case 1 for light load and
casc 2 for heavy load.

Figures 6 and 7 show the phase
relationships betwecen the measured input
voltage and the shunt converter control
waveforms, and between the measured input
current and the series converter control
waveforms for cases | and 2, respectively.

Now, the converters’ outpul is an
important issuc. In case 1, for light load of
244 mA, the measured input voltage is 204.4
V and leads line current by 72° This phase
shift is shown in fig. 6. The output voltage of
the shunt converter has a 70 V (fixed) peak
value and leads the input voltage by 90° as

shown in Fig. 8. The valug of shunt converter
pcak voltage can be controlled according 1o
the required injecled reactive current and this
is fefl for the fulure work. In Fig. 9, the
outpul voltage of the series converter teads
the line current by 216" (or leads the
measured voliage by 144%).

[n case 2, for heavy load of 1.4 A, the
waveforms of Fig. 10 show that the measured
inpul vollage decrcased to 153.3 V. The
shunt converter output voliage 1s still Jeads
the measurcd vollage by 90" Figurc |1
shows 1hat the series converier output voltage
leads the line current by 36°. Also. the
magnilude of the scries injecled voltage can
be adjusted by controlling the DC supply
(3ink).

The output of each converter is injected
1o the mid-peint of the simple power system
throughout voltage transformer. Figures 12
and |3 show the voliage of point connecting
the UPFC for cases | and 2, respectively. The
vollage is increased to 219 volt for case | and
reached 20! volt for case 2. Figures 14 and
15 show the mid-point voltage after adding
the series injected voltage for both cases.
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6. CONCLUSION

Digital signal processor (DSP) — based
single phase unified power flow controller
(UPFC) has been implemented. A simple and
efficient UPFFC control algorithm has been
achicved for both shunt side and series side. -
This algorithm is based on the active power
filter current reference calculation method.
The PWM voltage source converters linked
by DC source have been taken as an UPFC.
The experimental results have been analyzed.
The shunt converter output voltage is found
in quadrature with the bus voltage connecting
UPFC_and achieves voltage support. The
series converter output vollage leads line
current by an angle dependent on the required
power flow in the line which includes the
UPFC. The effect of series converter control
is clear in large scale power systems because
it can control the amount and direction of
power flow between different buses. The
problem of harmonics found in the injected
waveforms is due to the voltage transformer.
This problem can be avoided practically by
using suitably designed shunt and series
transformers.
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7. APPENDIX
The elements used in laboratory arc:

PC Hosl, Windows98, Matlab6.1(R12.1)/
Simulink,  DSP-TMS8320C31  Hardware,
DSpaceR4.3 Software, 2 Single-Phase 250
Km T.L. model, Single-Phase source {220
volt, 30 Hz), 2 Single-Phase 400 Walt / 300
Var variable (R-L) load, 1 LV25-P (400 V). |
LA25-NP (25 A), Optoisolator circuil
(4N35). Two H-bridges each consisiz of 4-
power MOSFETs (IRFP460). FFixed 70 voli
DC supply and single phase voltage
transformer 220/37.7 volt.
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