MANSOURA JOURNAL OF Mathematics

Hankel Determinant for Class of Analytic functions involving Generalized Noor Integral Operator

G. E. Abo Elyazyd ${ }^{1}$ A. M. Shahin ${ }^{2}$ and H. E. Darwish ${ }^{3}$

${ }^{1,2,3}$ Department of Mathematics Faculty of Science , Mansoura University Mansoura, 35516, Egypt.

Abstract: he objective of this paper is to obtain an upper bound to the second Hankel determinant $\left|u_{2} u_{4}-u_{3}^{2}\right|$ for class of functions $\mathcal{F}(v)=v+\sum_{n=2}^{\infty} u_{n} v^{n}$ involving generalized Noor integral operator, which we denote by $\delta_{\lambda}^{\mu}\left[J_{\lambda}\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right]$.
keywords Fox-Wright, Hypergeometric, Convolution, Analytic, Integral.

1.Introduction

Let \mathcal{A} denote the class of functions $\mathcal{F}(v)$ of the form
$\mathcal{F}(v)=v+\sum_{n=2}^{\infty} u_{n} v^{n}$
which are analytic in the open unit disk

$$
x:=\{v \in \mathbb{C}:|v|<1\} .
$$

By $\mathcal{S}, \mathcal{C}, \mathcal{S}^{*}, \mathcal{C}(\beta)$ and $\mathcal{S}^{*}(\beta)$ we denote the subclasses of \mathcal{A} consisting of functions that are univalent, convex, starlike, convex of order β and starlike of order β in \mathcal{X} respectively(see [5]). For the functions $\mathcal{F}(v)$ in (1) and
$\mathcal{G}(v)=v+\sum_{n=2}^{\infty} b_{n} v^{n}, v \in X$,
the convolution (Hadmard oproduct) is defined as
$(\mathcal{F} * \mathcal{G})(v)=(\mathcal{G} * \mathcal{F})(v)$
$=v+\sum_{n=2}^{\infty} u_{n} b_{n} v^{n}, v \in \mathcal{X}$.
Denoted by $\mathrm{d}^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ the operator
$\mathrm{d}^{\lambda} \mathcal{F}(v):=\frac{v}{(1-v)^{\lambda+1}} * \mathcal{F}(v)$,
$\lambda>-1$.
This implies that

$$
\begin{align*}
& \mathrm{d}^{n} \mathcal{F}(v)=\frac{v\left(v^{n-1} \mathcal{F}(v)\right)^{(n)}}{n!} \text { (4) } \tag{4}\\
& n \in N_{0}=N \cup\{0\} .
\end{align*}
$$

The operator $\mathrm{d}^{n} \mathcal{F}(v)$ is called Ruscheweyh derivative of n-th order of $\mathcal{F}(v)$. Note that the class $\mathrm{d}^{0} \mathcal{F}(v)=\mathcal{F}(v)$ and $\mathrm{d}^{1} \mathcal{F}(v)=$ $v \mathcal{F}^{\prime}(v)$. Recently, Noor [16, 18] defined and studied an integral operator $\mathcal{J}_{n}: \mathcal{A} \rightarrow \mathcal{A}$ analogous to $\mathrm{d}^{n} \mathcal{F}(v)$ as follows.
Let $\mathcal{F}_{n}(v)=v /(1-v)^{n+1}, n \in N_{0}$, and let $\mathcal{F}_{n}^{(-1)}(v)$ be defined such that

$$
\begin{equation*}
\mathcal{F}_{n}(v) * \mathcal{F}_{n}^{(-1)}(v)=\frac{v}{1-v .} \tag{5}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathcal{J}_{n} \mathcal{F}(v)=\mathcal{F}_{n}^{(-1)}(v) * \mathcal{F}(v) \\
& =\left[\frac{v}{(1-v)^{n+1}}\right]^{(-1)} * \mathcal{F}(v) \tag{6}
\end{align*}
$$

The operator J_{n} is called the Noor Integral of $n-$ th order of $\mathcal{F}(v)$. We note that $\mathcal{J}_{0} \mathcal{F}(v)=v \mathcal{F}^{\prime}(v)$ and $\mathcal{J}_{1} \mathcal{F}(v)=\mathcal{F}(v)$.
Furthermore, it is easily observed that

$$
\begin{align*}
& (n+1) \mathcal{J}_{n} \mathcal{F}(v)-n J_{n+1} \mathcal{F}(v)= \\
& v\left(\mathcal{J}_{n+1} \mathcal{F}(v)\right)^{\prime} . \tag{7}
\end{align*}
$$

By using hypergeometric functions ${ }_{2} F_{1}$, (6) becomes

$$
\begin{gather*}
\mathcal{J}_{n} \mathcal{F}(v)=\left[v_{2} F_{1}(1,1 ; n+1, v)\right] * \tag{8}\\
\mathcal{F}(v),
\end{gather*}
$$

where ${ }_{2} F_{1}(a, b ; c, v)$ is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c, v)=1+\frac{a b}{c} \frac{v}{1!} \tag{9}
\end{equation*}
$$

$+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{v^{2}}{2!}+\ldots$

For complex parameters

$$
\alpha_{1}, \ldots, \alpha_{q}\left(\frac{\alpha_{i}}{A_{i}} \neq 0,-1,-2, . . ; i=1, . ., q\right)
$$

and

$$
\beta_{1}, \ldots, \beta_{p}\left(\frac{\beta_{i}}{B_{i}} \neq 0,-1,-2, . . ; i=1, . . p\right) .
$$

In [4] and [23, 24] defined the Fox-Wright generalization ${ }_{q} \Psi_{p}[v]$ of the hypergeometric ${ }_{q} F_{p}$ functions as follows:

$$
\begin{align*}
& { }_{q} \Psi_{p}\left[\begin{array}{l}
\left(\alpha_{1}, A_{1}\right), \ldots,\left(\alpha_{q}, A_{q}\right) ;{ }_{2} \\
\left.\left(\beta_{1}, B_{1}\right), \ldots,\left(\beta_{p}, B_{p}\right) ;{ }^{2}\right]
\end{array}\right. \\
& \quad={ }_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right] \\
& =\sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{1}+n A_{1}\right) \ldots \Gamma\left(\alpha_{q}+n A_{q}\right)}{\Gamma\left(\beta_{1}+n B_{1}\right) \ldots \Gamma\left(\beta_{p}+n B_{p}\right)} \frac{v^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty} \frac{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+n A_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(\beta_{i}+n B_{i}\right)} \frac{v^{n}}{n!}, \tag{10}
\end{align*}
$$

where $\alpha_{i}, \beta_{i} \in \mathbb{C}, A_{i} \in \mathbb{R}^{+}(i=1, \ldots, q)$,
$B_{i} \in \mathbb{R}^{+}(i=1, \ldots, p) \quad$ and $\quad \sum_{j=1}^{p} B_{j}-$ $\sum_{j=1}^{q} A_{j}>-1$ for suitable values $|z|$.
For special case, when $A_{i}=1$ for $i=$ $1, \ldots, q$, and $B_{i}=1$ for $i=1, \ldots, p$, we have the following relationship:

$$
\begin{align*}
& { }_{q} F_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{p} ; v\right)= \\
& \Omega{ }_{q} \Psi_{p}\left[\left(\alpha_{i}, 1\right)_{1, q} ;\left(\beta_{i}, 1\right)_{1, p} ; v\right], \\
& \quad N \cup\{0\}, q \leq p+1 ; \quad q, p \in N_{0}= \\
& v \in \mathcal{X}, \text { where } \\
& \Omega:=\frac{\Gamma\left(\beta_{1}\right) \ldots \Gamma\left(\beta_{p}\right)}{\Gamma\left(\alpha_{1}\right) . . . \Gamma\left(\alpha_{q}\right)} . \tag{12}
\end{align*}
$$

Now, we introduce a function
$\left(v_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right]\right)^{-1}$ which given by

$$
\begin{align*}
& \left(v_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right]\right) * \\
& \left(v_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right]\right)^{-1} \\
& =\frac{v}{(1-v)^{\lambda+1}}=v+\sum_{n=2}^{\infty} \frac{(\lambda+1)_{n-1}}{(n-1)!} v^{n}, \tag{13}
\end{align*}
$$

($\lambda>-1$),
and obtain the following linear operator:

$$
\begin{align*}
& \mathcal{J}_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)= \\
& \left(v_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right]\right)^{-1} \\
& \quad * \mathcal{F}(v), \quad \text { (14) } \tag{14}
\end{align*}
$$

where $\mathcal{F}(v) \in \mathcal{A}, v \in \mathcal{X}$, and
$\left(v_{q} \Psi_{p}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p} ; v\right]\right)^{-1}=$
$v+\sum_{n=2}^{\infty} \frac{\Pi_{i=1}^{p} \Gamma\left(\beta_{i}+(n-1) B_{i}\right)}{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+(n-1) A_{i}\right)}(\lambda+\quad 1)_{n-1} v^{n}$. (15)

For some computation, we have
$\mathcal{J}_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)$
$=v+\sum_{n=2}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(\beta_{i}+(n-1) B_{i}\right)}{\prod_{i=1}^{q} \Gamma\left(\alpha_{i}+(n-1) A_{i}\right)}$
$(\lambda+1)_{n-1} u_{n} v^{n}$,
where $(u)_{n}$ denotes the Pochhammer symbol given, in general, by
$(u)_{n}=\frac{\Gamma(u+n)}{\Gamma(u)}=$
$\left\{\begin{array}{rl}1, & n \\ =0 \\ u(u+1) \ldots(u+n-1), & n\end{array}=\{1,2, \ldots\}\right.$.
Special cases:
(i) $\mathcal{J}_{0}\left[(1,1)_{1,1} ;(1,1 /(n-1))_{1, p}\right] \mathcal{F}(v)=$ $\mathcal{F}(v)$
(ii) $\mathcal{J}_{1}\left[(1,1)_{1,1} ;(1,1 /(n-1))_{1, p}\right] \mathcal{F}(v)=$ $z \mathcal{F}^{\prime}(v)$.
(iii) $v\left[J_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)\right]^{\prime}$
$=(\lambda+1) \mathcal{J}_{\lambda+1}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)$
$-\lambda \mathcal{J}_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)$.
Definition 1 [7] Let $\mathcal{F}(v) \in \mathcal{A}$ then $\mathcal{F}(v) \in$ $\delta_{\lambda}^{\mu}\left[J_{\lambda}\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right]$ if and only if
$\mathfrak{R}\left\{\frac{\left\{\left[\mathcal{J}_{\lambda}\left[\left(\alpha_{i,}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)\right]^{\prime}\right.}{J_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)}\right\}$
$>\mu, 0 \leq \mu<1, v \in X$.
Noonan and Thomas [15] stated the q-th Hankel determinant of the functions $\mathcal{F}(v)$ of the form (1) for $q \geq 1$ and $n \geq 0$ as

$$
H_{q}(n)=\left|\begin{array}{lccc}
u_{n} & u_{n+1} & \cdots & u_{n+q+1} \tag{19}\\
u_{n+1} & u_{n+2} & \cdots & u_{n+q+2} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n+q-1} & u_{n+q} & \cdots & u_{n+2 q-2}
\end{array}\right| .
$$

The determinant $H_{q}(n)$ has been investigated by many authors. For example, Noor [17] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for the functions $\mathcal{F}(v)$ given by (1) with bounded boundary, Ehrenborg [3] studied the Hankel determinant of exponential polynomials. The Hankel convert of an
integer sequence and some properties were discussed by Layman [11].
A classical theorem of Fekete and Szegö functional which considered the Hankel determinante of $\mathcal{F}(v) \in \mathcal{A}$ for $q=2$ and $n=1$,
$H_{2}(1)=\left|\begin{array}{ll}u_{1} & u_{2} \\ u_{2} & u_{3}\end{array}\right|$.
It is also known that Fekete Szegö gave sharp estimates of $\left|u_{3}-\mu u_{2}^{2}\right|$ for μ real and $\mathcal{F}(v) \in \mathcal{A}$. The Fekete-Szegö functional has $\left|u_{3}-\mu u_{2}^{2}\right|$ since received magnificent concern of many authors, specially in connection with several subclasses of the class \mathcal{A} of normalized analytic and univalent functions (see, for example, [1], [14], [19], [21], [22] and [25]).
In this paper, we use the secend Hankel determinante $(q=2, n=2)$ for $\mathcal{F}(v) \in \mathcal{A}$

$$
H_{2}(2)=\left|\begin{array}{ll}
u_{2} & u_{3} \\
u_{3} & u_{4}
\end{array}\right|
$$

The functional $\left|u_{2} u_{4}-u_{3}^{2}\right|$ has been studied by several authors as Janteng, Halim and Darus [10] found a sharp bound for $\mid u_{2} u_{4}-$ $u_{3}^{2} \mid$ where $\mathcal{F}(v)$ is the subclass RT of , consisting of functions whose derivative has a positive real part. Also see ([8],[9]).
Moreover, Let \mathcal{P} denote the class of functions $\mathrm{p}(v)$ of the form
$\mathrm{p}(v)=1+\sum_{n=1}^{\infty} c_{n} v^{n}$
which are analytic in X and satisfy
$\mathfrak{R} p(v)>0 \quad(v \in \mathcal{X})$.
Then we say that $\mathrm{p}(v) \in \mathcal{P}$ is the Carathéodory functions (see [2]).
We first state some preparatory lemmas, needed for proving our proof.

2.Preliminary results

The following lemma can be found in [2] or [20].
Lemma 2 If a function $p(v)=1+$ $\sum_{n=1}^{\infty} c_{n} v^{n} \in \mathcal{P}$, then
$\left|c_{n}\right| \leq 2 \quad(n=1,2,3, \ldots)$.
The result is sharp for
$\mathrm{p}(v)=\frac{1+v}{1-v}=1+\sum_{n=1}^{\infty} 2 v^{n}$.
Using the above lemma, we derive
Lemma 3 If a function $p(v)=1+$ $\sum_{n=1}^{\infty} c_{n} v^{n}$ satisfies the following inequality
$\Re \mathrm{p}(v)>\mu \quad(v \in \mathcal{X})$
for some $\mu(0 \leq \mu<1)$, then
$\left|c_{n}\right| \leq 2(1-\mu) \quad(n=1,2,3, \ldots)$.
The result is sharp for
$\mathrm{p}(v)=\frac{1+(1-2 \mu) v}{1-v}$
$=1+\sum_{n=1}^{\infty} 2(1-\mu) v^{n}$.
Proof. Let
$q(v)=\frac{\mathrm{p}(v)-\mu}{1-\mu}=1+\sum_{n=1}^{\infty} \frac{c_{n}}{1-\mu} v^{n}$.
Note that $\mathrm{q}(v) \in \mathcal{P}$ and by using Lemma 2, we have
$\left|\frac{c_{n}}{1-\mu}\right|<2 \quad(n=1,2,3, \ldots)$
which implies
$\left|c_{n}\right| \leq 2(1-\mu) \quad(n=1,2,3, \ldots)$.
Lemma 4 The power series for $p(v)=1+$ $\sum_{n=1}^{\infty} c_{n} v^{n}$ converges in \mathcal{X} to a function in \mathcal{P} if and only if the Toeplitz determinants
$D_{n}=\left|\begin{array}{ccccc}2 & c_{1} & c_{2} & \cdots & c_{n} \\ c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\ c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2\end{array}\right|$,
$(n=1,2,3, \ldots)$, where $c_{-n}=\overline{c_{n}}$, are all nonnegative. They are strictly positive except for $\mathrm{p}(v)=\sum_{n=1}^{m} \rho_{n} \mathrm{p}_{0}\left(e^{i t_{k}} v\right), \rho_{n}>0, t_{n} \neq$ t_{j} for $n \neq j$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.
This indispensable and sufficient condition is due to Carathéodory and Toeplitz, and it can be found in [6]. Libera and Złotkiewicz [12],[13] have given the next result by using this lemma with $n=2,3$.

Lemma 5 If a function $p(v) \in \mathcal{P}$, then the representations
$\left\{\begin{array}{l}2 c_{2}=c_{1}^{2}+\left(4-c_{1}^{2}\right) \zeta \\ 4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} \zeta-\left(4-c_{1}^{2}\right) c_{1} \zeta^{2} \\ +2\left(4-c_{1}^{2}\right)\left(1-|\zeta|^{2}\right) \eta\end{array}\right.$
for some complex numbers ζ and $\eta(|\zeta| \leq$ $1,|\eta| \leq 1$), are obtained.
By virtue of Lemma 5, we have
Lemma 6 If a function $p(v)=1+$ $\sum_{n=1}^{\infty} c_{n} v^{n}$ satisfies $\mathfrak{R} p(v)>\mu(v \in \mathcal{X})$ for some $\mu(0 \leq \mu<1)$, then
$2(1-\mu) c_{2}=c_{1}^{2}+\left\{4(1-\mu)^{2}-c_{1}^{2}\right\} \zeta$
$4(1-\mu)^{2} c_{3}=c_{1}^{3}+2\left\{4(1-\mu)^{2}-c_{1}^{2}\right\} c_{1} \zeta$
$-\left\{4(1-\mu)^{2}-c_{1}^{2}\right\} c_{1} \zeta^{2}+2(1-\mu)$
$\left\{4(1-\mu)^{2}-c_{1}^{2}\right\}\left(1-|\zeta|^{2}\right) \eta$
for some complex numbers ζ and $\eta(|\zeta| \leq$ $1,|\eta| \leq 1$).
Proof. Since
$q(v)=\frac{\mathrm{p}(v)-\mu}{1-\mu}=1+\sum_{n=1}^{\infty} \frac{c_{n}}{1-\mu} v^{n} \in \mathcal{P}$,
replacing c_{2} and c_{3} by $\frac{c_{2}}{1-\mu}$ and $\frac{c_{3}}{1-\mu}$ in Lemma 5 , respectivily, we immediately have the relations of the lemma.
3 Main Results
Theorem 7 Let $\mathcal{F}(v) \in$
$\mathcal{S}_{\lambda}^{\mu}\left[\mathcal{I}_{\lambda}\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right]$. Then
$\left|u_{2} u_{4}-u_{3}^{2}\right| \leq \frac{2(1-\lambda)^{2}}{\lambda(\lambda+1)^{2}}$
$\left(\frac{n_{i=1}^{q} \Gamma\left(\alpha_{i}+2 A_{i}\right)}{\Pi_{i=1}^{p} \Gamma\left(\beta_{i}+2 B_{i}\right)}\right)^{2}$.
Proof. Since $\mathcal{F}(v) \in$
$\mathcal{S}_{\lambda}^{\mu}\left[\mathcal{J}_{\lambda}\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right]$, it follows from (18) that

$$
\begin{align*}
& \frac{v\left[\mathcal{J}_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)\right]^{\prime}}{\mathcal{J}_{\lambda}\left[\left(\alpha_{i}, A_{i}\right)_{1, q} ;\left(\beta_{i}, B_{i}\right)_{1, p}\right] \mathcal{F}(v)} \\
& \quad=\mathrm{p}(v) \tag{24}
\end{align*}
$$

for some $v \in \mathcal{X}$. Equating coefficients in (24) yields
$u_{2}=\frac{c_{1}}{(\lambda+1)} \frac{\prod_{i=1}^{q} \Gamma\left(\alpha_{i}+A_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(\beta_{i}+B_{i}\right)}$
$u_{3}=\frac{\left.\left(c_{2}+c_{1}^{2}\right)\right)}{2 \lambda(\lambda+1)} \frac{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+2 A_{i}\right)}{\Pi_{i=1}^{p} \Gamma\left(\beta_{i}+2 B_{i}\right)}$
$u_{4}=\frac{\left(c_{3}+\frac{3}{2} c_{1} c_{2}+\frac{c_{1}^{3}}{2}\right)}{3 \lambda(\lambda+1)(\lambda+2)} \frac{\prod_{i=1}^{q} \Gamma\left(\alpha_{i}+3 A_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(\beta_{i}+3 B_{i}\right)}$.
From (25), it easily established that
$\left|u_{2} u_{4}-u_{3}^{2}\right|=\frac{1}{\lambda(\lambda+1)^{2}(\lambda+2)}$
$\left.\frac{\prod_{i=1}^{q} \Gamma\left[\left(\alpha_{i}+A_{i}\right) \Gamma\left(\alpha_{i}+3 A_{i}\right)\right]}{\prod_{i=1}^{p} \Gamma\left[\left(\beta_{i}+B_{i}\right) \Gamma\left(\beta_{i}+3 B_{i}\right)\right]} \right\rvert\, \frac{c_{1} c_{3}}{3}$
$+\frac{c_{1}^{2} c_{2}}{2}+\frac{c_{1}^{4}}{6}-\frac{\left(c_{2}^{2}+2 c_{2} c_{1}^{2}+c_{1}^{4}\right)(\lambda+2)}{4 \lambda}$
$\frac{\prod_{i=1}^{p}\left[\Gamma\left(\beta_{i}+B_{i}\right) \Gamma\left(\beta_{i}+3 B_{i}\right)\right]}{\prod_{i=1}^{q} \Gamma\left[\left(\alpha_{i}+A_{i}\right) \Gamma\left(\alpha_{i}+3 A_{i}\right)\right]}$
$\left.\left(\frac{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+2 A_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(\beta_{i}+2 B_{i}\right)}\right)^{2} \right\rvert\,$
or
$\left|u_{2} u_{4}-u_{3}^{2}\right|=H\left(\alpha_{i}, A_{i}, \beta_{i}, B_{i}, \lambda\right) \left\lvert\, \frac{c_{1} c_{3}}{3}\right.$
$\left.+\frac{c_{1}^{2} c_{2}}{2}+\frac{c_{1}^{4}}{6}-\frac{\left(c_{2}^{2}+2 c_{2} c_{1}^{2}+c_{1}^{4}\right)}{4} G \right\rvert\,$
where
$H\left(\alpha_{i}, A_{i}, \beta_{i}, B_{i}, \lambda\right)=\frac{1}{\lambda(\lambda+1)^{2}(\lambda+2)}$
$\frac{\prod_{i=1}^{q} \Gamma\left[\left(\alpha_{i}+A_{i}\right) \Gamma\left(\alpha_{i}+3 A_{i}\right)\right]}{\prod_{i=1}^{p} \Gamma\left[\left(\beta_{i}+B_{i}\right) \Gamma\left(\beta_{i}+3 B_{i}\right)\right]}$
and
$G=\frac{(\lambda+2)}{\lambda} \frac{\prod_{i=1}^{p}\left[\Gamma\left(\beta_{i}+B_{i}\right) \Gamma\left(\beta_{i}+3 B_{i}\right)\right]}{\prod_{i=1}^{q} \Gamma\left[\left(\alpha_{i}+A_{i}\right) \Gamma\left(\alpha_{i}+3 A_{i}\right)\right]}$
$\left(\frac{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+2 A_{i}\right)}{\Pi_{i=1}^{p} \Gamma\left(\beta_{i}+2 B_{i}\right)}\right)^{2}$
Since the function $\mathrm{p}(v)$ is a member of the class \mathcal{P} at the same time, we can suppose without restriction that $c_{1} \geq 0$ and take
$c_{1}=c \quad(0 \leq c \leq 2)$ and by using (22)we derive
$\left|u_{2} u_{4}-u_{3}^{2}\right|=H\left(\alpha_{i}, A_{i}, \beta_{i}, B_{i}, \lambda\right)$
$\left\lvert\, \frac{1}{12(1-\mu)}\left[c^{4}+2 c^{2}\left\{4(1-\mu)^{2}-c^{2}\right\} \zeta\right.\right.$
$-c^{2}\left\{4(1-\mu)^{2}-c^{2}\right\} \zeta^{2}+2(1-\mu) c$
$\left.\left\{4(1-\mu)^{2}-c^{2}\right\}\left(1-|\zeta|^{2}\right) \eta\right]+\frac{1}{4(1-\mu)}$

$$
\left.\begin{array}{l}
{\left[c^{4}+c^{2}\left\{4(1-\mu)^{2}-c^{2}\right\} \zeta\right]+\frac{c^{4}}{6}} \\
-\frac{G}{16(1-\mu)^{2}}
\end{array} c^{4}+2 c^{2}\left\{4(1-\mu)^{2}\right) ~\left[c^{2}\right\}^{2} \zeta^{2}\right]-\frac{G}{4(1-\mu)} .
$$

An application of triangle inequality and alteration of $|\zeta|$ by ρ give

$$
\begin{align*}
& \left|u_{2} u_{4}-u_{3}^{2}\right| \leq H\left(\alpha_{i}, A_{i}, \beta_{i}, B_{i}, \lambda\right) \\
& {\left[\left\{\frac{1}{3(1-\mu)}-\frac{\left(4 \mu^{2}-12 \mu+9\right)}{16(1-\mu)^{2}} G\right\} c^{4}\right.} \\
& +\left\{\frac{5}{12(1-\mu)}-\frac{(3-2 \mu)}{8(1-\mu)^{2}} G\right\} \\
& c^{2}\left\{4(1-\mu)^{2}-c^{2}\right\} \rho+\left\{\frac{c^{4}}{12(1-\mu)}\right. \\
& \left.+\frac{\left\{4(1-\mu)^{2}-c^{2}\right\}}{16(1-\mu)^{2}} G\right\}-\frac{c}{6}\left\{4(1-\mu)^{2}\right. \\
& \left.\left.-c^{2}\right\} \rho^{2}+\frac{1}{6} c\left\{4(1-\mu)^{2}-c^{2}\right\}\right]=F(c, \rho) \tag{26}
\end{align*}
$$

where $0 \leq c \leq 2$ and $0 \leq \rho \leq 1$.
We next maximize the function $F(c, \rho)$ on the closed square $[0,2] \times[0,1]$.
Since
$\frac{\delta F}{\delta \rho}=H\left(\alpha_{i}, A_{i}, \beta_{i}, B_{i}, \lambda\right)$
$\left[\left\{\frac{5}{12(1-\mu)}-\frac{(3-2 \mu)}{8(1-\mu)^{2}} G\right\}\right.$
$c^{2}\left\{4(1-\mu)^{2}-c^{2}\right\}+\left\{\frac{c^{4}}{6(1-\mu)}\right.$
$\left.+\frac{\left\{4(1-\mu)^{2}-c^{2}\right\}}{8(1-\mu)^{2}} G-\frac{c}{3}\right\}$
$\left\{4(1-\mu)^{2}-c^{2}\right\} \rho$],
$\frac{(3-2 \mu)}{(1-\mu)} G<\frac{10}{3}, \quad$ wehave $\quad \frac{\delta F}{\delta \rho}>0$.
Thus $F(c, \rho)$ cannot have a maximum in the interior of the closed square $[0,2] \times[0,1]$. Then, for fixed $c \in[0,2]$
$\max _{0 \leq \rho \leq 1} F(c, \rho)=F(c, 1)=M(c)$
$M^{\prime}(c)<0$ for $0<c<2$ and has real critical point at $c=0$. Also observe that
$M(c)>M(2)$. Therefore, $\max _{0 \leq c \leq 2} M(c)$ occurs at $c=0$ and thus the upper bound of (26) corresponds to $\rho=1$ and $c=0$, in which case
$\left|u_{2} u_{4}-u_{3}^{2}\right| \leq \frac{2(1-\lambda)^{2}}{\lambda(\lambda+1)^{2}}$
$\left(\frac{\Pi_{i=1}^{q} \Gamma\left(\alpha_{i}+2 A_{i}\right)}{\Pi_{i=1}^{p} \Gamma\left(\beta_{i}+2 B_{i}\right)}\right)^{2}$.
This complete the proof.

References

1 Ş. Altınkaya and S. Yalçın, (2014), Fekete-Szegö inequalities for certain classes of bi-univalent functions, Internat. Scholar. Res. Notices 2014 Article ID 327962, 1-6.
2 P. L. Duren, (1983).Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo,
3 R. Ehrenborg, (2000), The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107 557-560.
4 C. Fox, (1928), The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc. (Ser. 2), 27 389-400.
5 A. W. Goodman,(1983)Univalent Functions, Vols. I, II, Mariner publishing company, Tampa, Florida, USA.
6 U. Grenander and G. Szegö, (1958). Toeplitz forms and their applications, Univ. of California Press, Berkeley and Los Angeles,
7 R. W. Ibrahim and M. Darus, (2008) New classes of analytic functions involving generalized Noor integral operator, Journal of Inequalities and Applications, 1, 390-435.
8 T. Hayami and S. Owa, (2009), Hankel determinant for p -valently starlike and convex functions of order α, General Math., 17 29-44.
9 T. Hayami and S. Owa, (2010), Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 2573-2585.
10 A. Janteng, S. A. Halim and M. Darus, (2006), Coefficient inequality for a function whose derivative has a positive
real part, J. Inequal. Pure Apple. Math, 7(2) 1-5.
11 J. W. Layman, (2001), The Hankel transform and some of its properties, J. Integer Seq., 4-11.
12 R. J. Libera and E. J. Złotkiewicz, (1982), Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85225-230.
13 R. J. Libera and E. J. Złotkiewicz, (1983), Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc. 87251-257.
14 N. Magesh and J. Yamini, Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions, Preprint 2015: arXiv:1508.07462v2 [math.CV].J. W. Noonan and D. K. Thomas, (1976), On the second Hankel determinant of areally mean p -valent functions, Transactions of the American Mathematical Society 223 337-346.
15 K. I. Noor, (1999)On new classes of integral operators, Journal of Natural Geometry, vol. 16, no. 1-2, pp. 71-80,.
16 K. I. Noor, (1983), Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl. 28 731-739.
17 K. I. Noor and M. A. Noor, 1999.On integral operators, Journal of Mathematical Analysis and

Applications, vol. 238, no. 2, pp. 341352,
18 H. Orhan, N. Magesh and V. K. Balaji, (2016), Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afrika Mat. 27 889-897.
19 Ch. Pommerenke, (1975).Univalent Functions, Vandenhoeck and Ruprechet, Göttingen,
20 H. M. Srivastava, A. K. Mishra and M. K. Das, (2001), The Fekete-Szegö problem for a subclass of close-toconvex functions, Complex Variables Theory Appl. 44 145-163.
21 H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, (2016), The Fekete-Szegö functional problems for some classes of m -fold symmetric bi-univalent functions, J. Math. Inequal. 10 1063-1092.
22 E. M. Wright, (1935), The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 286-293.21.
23 E. M. Wright, (1940), The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (Ser. 2), 46389-408.
24 Z. Zaprawa, (2014), On Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 169-178.

