Menoufia University
Faculty of Engineering
Shebin El-Kom
Department: Mechanical Engineering
$1{ }^{\text {th }}$ Semester
Final Exam: 4 pages +chart

Post Graduate: Diploma
Subject: Pipe Network (MPE520)
Time allowed: 3hr
Full Mark: 100
Academic Year: 2016-2017
Date: 8 /01/2017

Assume any missing data, state your assumption clearly, and Answer all questions

Question (1)

1.a) (i)-Assuming logarithmic low velocity profile $\frac{u}{u^{*}}=2.5 \ln \left(\frac{y u^{*}}{v}\right)+5.5$ for the turbulent flow through smooth pipes. Show that for turbulent flow in a pipe of a radius R the variation of the difference between the maximum velocity $V_{\text {max }}$ and the local velocity u at any distance y from the bounding surface follows the same variation with respect to the relative distance y / R in smooth pipe.
(ii) For turbulent flow in a pipe of 25 cm diameter, the centre line velocity is $2.25 \mathrm{~m} / \mathrm{s}$ and the velocity at a point 8 cm from the centre as measured by a pitot tube is $1.95 \mathrm{~m} / \mathrm{s}$. Make calculations for (i) friction velocity and wall shearing stress, (ii) average velocity and discharge through the pipe, (iii) friction factor and (iv) pipe roughness.
1.b) The discharges in the $A B$ and $A C$ pipes are respectively $Q_{1}=50$ lit/sec and $Q_{2}=80$ lit/sec for the pipe system given. The required pressure at the B and C outlets is 200 kPa and the geometric elevations for these points are $Z_{B}=$ 50 m and $\mathrm{Z}_{\mathrm{c}}=45 \mathrm{~m}$. The physical characteristics of the pipe system are,

Pipe	Length (\mathbf{m})	Diameter (mm)	f
RA	2000	300	0.02
$\mathbf{A B}$	1000	350	0.02
$\mathbf{A C}$	1500	400	0.02

Calculate the minimum water surface level of the reservoir R to supply the required pressure at the outlets. Draw the energy line of the system. $\gamma_{\text {water }}=10 \mathrm{kN} / \mathrm{m}^{3}$.

Question (2) $f=0.02$ in the main and all laterals, and $\mathrm{L}_{3} / \mathbf{D}_{\mathbf{3}}=5.0$ for each lateral. Considering fluid friction in the main and laterals and junction losses, compute the port discharges Q_{a}, Q_{b} and Q_{c}. The downstream end of the main is closed off by a blank plate.

Menoufia Umiversity
Faculty of Engineering
Shebin El-Kom
Department: Mechanical Engineering
$1^{\text {th }}$ Semester
Final Exam: 4 pages +chart

Post Graduate: Diploma
Subject: Pipe Network (MPE520)
Time allowed: 3hr
Full Mark: 100
Academic Year: 2016-2017
Date: 8 /01/2017

2.b) Compute the steady flow rate in all pipes

Question (3)

(25 Marks)
In the sketch as shown in Fig. (3), a network with 10 pipes and 7 nodes which contains three pumps and one turbine. Use the pairs of (Q, hp) data in the table-1 to define the pump curves. The dimension of the pipelines of network ($D \& L$) is given in table-2. The demands discharge and elevations at all nodes for the pipe network are given in table2. By using the Newton method, solve the ΔQ-system equations, then determine the following: i)-Flowrates for all pipes of the network, ii)-HGL elevations at all nodes of the pipe network, iii)-pressure in bar at all nodes of the pipe network, iv) - Manometric heads for all pumps and turbine. Take for all pipes, $f=0.01$ and $n=2, v=1.31 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, $\epsilon=0.0001 \mathrm{~m}$ for all pipe.

Menoufia University
Faculty of Engineering
Shebin El-Kom
Department: Mechanical Engineering $1^{\text {th }}$ Semester
Final Exam: 4 pages +chart

Post Graduate: Diploma
Subject: Pipe Network (MPE520)
Time allowed: 3hr
Full Mark: 100
Academic Year: 2016-2017
Date: 8 /01/2017

Fig. (3)
Table-1

Pump 1		Pump 2		Pump 3		Tubrbine	
$\mathbf{Q (m}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathbf{H}(\mathrm{m})$	$\mathbf{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathbf{H}(\mathrm{m})$	$\mathbf{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathbf{H}(\mathrm{m})$	$\mathbf{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathbf{H}(\mathrm{m})$
0.40	20	0.12	16	0.06	8	0.09	-8.0
0.42	18	0.15	15	0.08	7.5	0.10	-7.5
0.44	15	0.18	13.6	0.1	$\mathbf{6 . 8}$	0.11	-6.8

Pipe No.					
Pipe N	D(m)	L(m)	Node No.	Elevation (m)	$\begin{gathered} \text { Demands } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$
2	0.45	10000	1	200	0.05
3	0.35	800	2	228	0.05
4	0.25	2000	3	220	0.10
5	0.20	2000	4	180	0.06
6	0.25	800	5	170	0.04
7	0.20	2000	6	160	0.07
8	0.20	900	7	160	0.04
9	0.20	600			
10	0.20	800			

Question (4)

(25 Marks)
For the network shown in Fig. (4), the pipe- $\underline{5}$ contains a pressure reducing valve (PRV) $\mathbf{2 0 0} \mathrm{m}$ downstream from node $\underline{2}$ that is set to maintain an HGL $=\underline{149} \mathbf{m}$ on its discharge side. The dimensions of the pipelines of network ($\mathrm{D} \& \mathrm{~L}$) and ($\mathrm{k} \& \mathrm{n}$) as given in table-3. The pumps characteristics are listed in table -4. The initial estimations values of $Q_{i o}$ for pipes of the network are listed in column vector in table -3. Do the following:

1) - write the system of ΔQ-equations, 2)-Using the Newton iterative formula, solve the system of ΔQ-equations, and then determine the following: i)-Volume flowrate $\left(Q_{i}\right)$ for all pipes, ii)-HGL elevation at every node of the pipe network,
iii)-HGL on the upstream side of the PRV, iv)-What head drop occurs across the PRV?, Whart horse power does this loss represent?.

Menoufia University
Faculty of Engineering
Shebin El-Kom
Department: Mechanical Engineering $1^{\text {th }}$ Semester
Final Exam: 4 pages +chart

Post Graduate: Diploma
Subject: Pipe Network (MPE520)
Time allowed: 3hr
Full Mark: 100
Academic Year: 2016-2017
Date: 8 /01/2017

Table-3

Pipe No.	$\mathbf{D}(\mathrm{m})$	$\mathbf{L}(\mathrm{m})$	\mathbf{K}	\mathbf{n}	$\mathbf{Q}_{\mathrm{oi}}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathbf{Q}_{\mathrm{oi}}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	
1	$\mathbf{0 . 2}$	500	1160	1.827	\mathbf{Q}_{1}	$\mathbf{0 . 1 2}$	
2	0.2	300	613	1.788	\mathbf{Q}_{2}	$\mathbf{0 . 0}$	
3	0.2	500	1160	1.827	\mathbf{Q}_{3}	$\mathbf{0 . 1 1}$	
4	0.2	300	690	1.824	\mathbf{Q}_{4}	0.07	
5	0.2	600	1292	1.801	\mathbf{Q}_{5}	0.04	
6	0.2	500	1115	1.812	\mathbf{Q}_{6}	0.06	
7	0.25	300	322	1.772	\mathbf{Q}_{7}	0.08	
8	0.25	300	239	1.832	\mathbf{Q}_{8}	$\mathbf{0 . 1 8}$	

Pump 1		Pump 2	
$\mathbf{Q (m ^ { 3 } / \mathrm { s })}$	$\mathrm{hP}_{\mathrm{P}}(\mathrm{m})$	$\mathbf{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\mathrm{h}_{\mathrm{P}}(\mathrm{m})$
0.025	12.0	0.06	4.0
0.040	10.5	0.090	3.8
0.055	8.0	0.120	3.5

Fig. (4)
GOOD LUCK
Prof. Mohamed El.Mayet \& Dr.Ismail M. Sakr

