Menoufia University Faculty of Engineering Shebin El-Kom Department: Mechanical Engineering 1th Semester Final Exam: 4 pages +chart

Post Graduate: Diploma Subject: Pipe Network (MPE520) Time allowed: 3hr Full Mark: 100 Academic Year: 2016-2017 Date: 8 /01/2017

Assume any missing data, state your assumption clearly, and Answer all questions

Question (1)

(25 Marks)

<u>1.a)</u> (i)-Assuming logarithmic low velocity profile $\frac{u}{u^*} = 2.5 \ln(\frac{yu^*}{v}) + 5.5$ for the turbulent flow through smooth

pipes. Show that for turbulent flow in a pipe of a radius R the variation of the difference between the maximum velocity V_{max} and the local velocity u at any distance y from the bounding surface follows the same variation with respect to the relative distance y/R in smooth pipe.

(ii) For turbulent flow in a pipe of 25 cm diameter, the centre line velocity is 2.25 m/s and the velocity at a point 8 cm from the centre as measured by a pitot tube is 1.95 m/s. <u>Make</u> calculations for (i) friction velocity and wall shearing stress, (ii) average velocity and discharge through the pipe, (iii) friction factor and (iv) pipe roughness.

<u>1.b)</u> The discharges in the AB and AC pipes are respectively $Q_1=50$ lit/sec and $Q_2=80$ lit/sec for the pipe system given. The required pressure at the B and C outlets is 200 kPa and the geometric elevations for these points are $Z_B = 50$ m and $Z_c = 45$ m. The physical characteristics of the pipe system are,

Pipe	Length (m)	Diameter (mm)	F	
RA	2000	300	0.02	
AB	1000	350	0.02	
AC	1500	400	0.02	

Calculate the minimum water surface level of the reservoir R to supply the required pressure at the outlets. Draw the energy line of the system. $\gamma_{water} = 10 \text{ kN/m}^3$.

Question (2)

(25 Marks)2. a) The 3-port manifold shown in the next diagram has a port-to-main diameter ratio D₃/D₂=0.4, a friction factor f=0.02 in the main and all laterals, and L₃/D₃=5.0 for each lateral. Considering fluid friction in the main and laterals and junction losses, <u>compute</u> the port discharges Q_a, Q_b and Q_c. The downstream end of the main is closed off by a blank plate.

2.b) Compute the steady flow rate in all pipes

Question (3)

(25 Marks)

In the sketch as shown in Fig. (3), a network with 10 pipes and 7 nodes which contains three pumps and one turbine. Use the pairs of (Q, hp) data in the <u>table-1</u> to define the pump curves. The dimension of the pipelines of network (D&L) is given in <u>table-2</u>. The demands discharge and elevations at all nodes for the pipe network are given in <u>table-2</u>. By using the Newton method, solve the ΔQ -system equations, then determine the following: i)-Flowrates for all pipes of the network, ii)-HGL elevations at all nodes of the pipe network, iii)-pressure in bar at all nodes of the pipe network, iv) - Manometric heads for all pumps and turbine. Take for all pipes, f = 0.01 and n=2, $v=1.31x10^{-6}$ m²/s, $\varepsilon=0.0001$ m for all pipe.

Menoufia University Faculty of Engineering Shebin El-Kom **Department: Mechanical Engineering** 1th Semester Final Exam: 4 pages +chart

Post Graduate: Diploma Subject: Pipe Network (MPE520) Time allowed: 3hr Full Mark: 100 Academic Year: 2016-2017 Date: 8 /01/2017

Fig. (3) Table 1

Pum	ip 1	Pun	1D 2	Pur	un 2		
Q (m ³ /s) H(m)	$O(m^{3}/c)$ II	II (mr)		ip 5	Turbine		
	II(III)		H (M)	Q (m³/s)	H (m)	$Q(m^3/s)$	H (m)
0.40	20	0.12	16	0.06	0	0.00	. ,
0.42	18	0.15	15	0.00	0	0.09	-8.0
0.44	15	0.15	15	0.08	7.5	0.10	-7.5
0.44	15	0.18	13.6	0.1	6.8	0.11	60

		Table-2			
Pipe No.	D(m)	L(m)	Node No.	Elevation (m)	Demands
1	0.45	10000	1	200	(m ² /s)
2	0.35	800	1	200	0.05
3	0.25	2000	2	228	0.05
1	0.25	2000	3	220	0.10
	0.25	2000	4	180	0.06
5	0.20	800	5	170	0.00
6	0.25	900	6	160	0.04
7	0.20	2000	7	100	0.07
8	0.20	900	1	100	0.04
9	0.20	600			
10	0.20	800			

Question (4)

(25 Marks)

For the network shown in Fig. (4), the pipe- 5 contains a pressure reducing valve (PRV) 200 m downstream from node <u>2</u> that is set to maintain an HGL = <u>149 m</u> on its discharge side. The dimensions of the pipelines of network (D&L) and (k & n) as given in table-3. The pumps characteristics are listed in table -4. The initial estimations values of Qio for pipes of the network are listed in column vector in table -3. Do the following:

1) - write the system of ΔQ -equations, 2)-Using the Newton iterative formula, solve the system of ΔQ -equations, and then determine the following: i)-Volume flowrate (Qi) for all pipes, ii)-HGL elevation at every node of the pipe network,

iii)-HGL on the upstream side of the PRV, iv)-What head drop occurs across the PRV?, Whart horse power does this loss represent?.

Menoufia University Faculty of Engineering Shebin El-Kom Department: Mechanical Engineering 1th Semester Final Exam: 4 pages +chart

Post Graduate: Diploma Subject: Pipe Network (MPE520) Time allowed: 3hr Full Mark: 100 Academic Year: 2016-2017 Date: 8 /01/2017

			Ta	ble-3			
Pipe No.	D(m)	L(m)	K	n	O_{0i} (m ³ /s)	O_{ai} (m ³ /s)	
1	0.2	500	1160	1.827	O 1	0.12	
2	0.2	300	613	1.788		0.0	
3	0.2	500	1160	1.827		0.0	
4	0.2	300	690	1.824	Q3	0.11	
5	0.2	600	1292	1.801		0.07	
6	0.2	500	1115	1.812	Q5	0.04	
7	0.25	300	322	1.012	<u>Q6</u>	0.00	
8	0.25	300	239	1.072	<u>Q</u> 7	0.08	
			Tab	1.052	Q8	0.18	
	Darra		140	1e -4			
	Pump 1			Pump 2			
Q (n	Q (m ³ /s) h _P (m) Q (m		³ /s) h _P (m)		(m)
0.025 12		.0	0.06		4.0		
0.040		10.5		0.090		3.8	
0.055		8.	0	0.1	20	3.5	

GOOD LUCK Prof. Mohamed El.Mayet & Dr.Ismail M. Sakr