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ABSTRACT

Checking for stability of columns and beams in bracec frames is based on
the elastic effective lengths., Simple design formulas. [or checking the
stability of the individual Pin-ended columns, are derived, where the
effective length is equal to the line structure length. In this paper the
problem of checking the stability of single braced {rames, by using the
eguivalent celumn appreoach is considered, i.e the stabilitz check of the toral
braced frame is replaced by stability cheeks of the individual Columns.
Requirements necessary for the beams of a simple braced frame are sought, when
the column is checked lor stability using the elastic effectiv: length .

Notations

& cross sectlonal area

b beam length

E Young's modulus

I moment of Inertia

K rotational stiffness

Ib buckling length

l° elastic effective length

I‘3 system length or line structure length
P concentrated load

PA column capacity based on Ib = le

It

"column capacity based on | b

Euler buckling lcad
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M1 end-moment with the smallest absolute value
Mz end-moment with the largest absolute value
M absolute value of M 2

MP Plastic moment of a column section

Mp."d reduced plastic moment

Mr restraining moment

N squash load

wp unifomly distributed load

A displacement

XY rectanguiar coordinates

-} displacement

&a initial imperfection

8o amplitude of imperfection

A slenderness ratio

Ae elasic effective slenderness ratio

A system slenderness ratio

INTRODUCTION

A definition of structural stability is given in tarms of the sensitivity
of structdres to variations of the design parameters. However., the overall
stability of structures is a fundamental engins2ring concept  which,
nevertheless, has only been rather loosely defined in ‘ze past. In an attempt
to improve the understanding of this concept the nain factors governing
stability are discussed below.

In general, the stability of a braced [rame (s checked using the first
order elastic force distribution. Stabllity check of the total braced flrame is
replaced by stability checks of the individual columns. The columns are ‘cue’
out of the frame and the resultant pin-ended celumns, with the imposed bending
moments and axial [orces, are checked for stabilitz, Fig, (1), [10]. The
problem of the stability of a braced frame is thus sizplified to that of an
individual columns .

P p
Lol o
———

Braced [rame

P.0.5wl

Moment distribution Axial force

Structure M
M 2
T {—E\“ 2 Individual column

L ,

Fig. {1} The individual column approach

Hl M, P+0.5wl



Manscira engineering Journal { MEJ ). Vol.16, No.l, June |99] C.50

Non-linear analyses of such c¢olumns have led to interaction curves that
descrive the collapse of columns under combined bending and axial compression.
[nteraztion {ormulae are derived from these interaction curves.

These “ormulae (11| ¢an be written in the following {orms;

*
N+p._BM+Ne .. 0
A Z ¥

where ;

T TR (2}
is the cross-sectional area,

is the axial load,

is the absolute value of largest end bending moment,
is the ratio between Euler buckling load and axial force,

SRR L

is the imperfection parameter,
is the elastic section modulus,

»

is the equivalent moment factor, and
is the yieid stress.

YT A

“" -
also u and e are based on the buckling length.

according to ECCS (L1]

M

3 % 0.6+ 04 - z 0.4 @
2

Equation (1) can be modified as follows,

N v A M
b= + ZP E a-y {4)
where:

2 :the buckling coefficient,

z : the plastic section Modulus,

P

p and p are based on the buckling length and 8 is given in Eq. (3).

Eq.(4) can be written in the (ollowing (orm,

=] (5)

The 8 Factor accounts (or the shape of the moment distribution and is a
measure of the magnitude of the bending moment in a critical section of the
column in the deformed situation [1] . In fact, the stapility check of the
individual column {5 reduced to a check on the characteristic moment .
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1 : THE BUCKLING LENCTH CONCEPT, AND THE PROBLEM DESCRIPTION

When the individual column approach is consistently applied, the buckling
Jength should be taken equal to the system length, Fig.(l}. However the
buckling length eoncept is used in Eqns. (1-4). In fact, the eolumns lorm part
of the braced frame and it can be shown that the use of the system length
as buckling length is conservative in many cases. In the extreme case of a
column in conjunction with a beam with infinite stiffness and no bending
moments, the slastic carrying capacity is four times that of a pin-ended
column,Fig.{2). When the end moments obtained by linear elastic moment
distributien, are small, the use of the individual column approach with 1b = 1’

gives conservative results. This is also shown by geometric and material
non-linear analyses of braced (rames with initially imperfect columns,
Fig.(3).These analyses are carried out with the finite element method (f.e.m.)
using computer program DIANA [31.

P P

>

Fig. { 2} Braced frame where 1b= l is conservative
]

The imperlections in the columns are so determined that a pin-ended axially
loaded caolumn attaing collapsem ar the load carrying capacirty

resulting (rom the ECCS buckling curves using 1:: = ls

P{KN] P(kN) L
£di5) Y=lo 298
500 -{E9.{5) R T
P00 e P =297

Column: HES 100
Rafter : HEB 140

B ]

FiG.{3) Comparison of finite element method (I.e.m.) results, 3] with Eq.(5)
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The finite element method analyses (f.e.m.}(3| show that the interaction
formula, using lb = |, gives a pgood approximation to the ioad carrying
£

capacity ol the frame, if the collapse of the columns characterizes the frame

hehaviour, Fig.(3). Therefore, checks on column stability in braced {rames are

acceptabie on the basis of lh = |, [lIll. This, however has consequences for
L1

checking of the beams, The moment distribution at collapse is different from
the momeut distribution using the first order elastic analysis. At collapse
the sum of the bending moments on the beam is greater than 012/8. Fig.(4), This
is caused by the top restraining moment Mr that has to stabiiize the column.

At the top of the column, the bending moment can even change sign, Fig.(5).
Figures (4] and (5} show that knowledge of the moment distribution at collapse
is indispensible for checking of the beams. In view of this it is clear that
checking the beams on the basis of the (irst order moment distribution is
insufficient .
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{a) Structure (b] B.M. lst order-elastic {c) B.M. at collapse

Fig. ( 4 ) Comparisen of bending moment diagrams

It is suggested [11,15] that the (irst order elastlc moment distribution
should be magnified by multiplication with the amplification factor {(u/{u-13)
of the column, Fig.{4-b). This approach does not satisfy equilibrium. Ta
addition, a possible change of sign of the moment at the top of the column is
not brought into account. Therefore, other methods are discussed in this

paper.
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Fig. { 5 ) Change of sign of bending moment at the top of the column
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Cnly by shifting the [irst order elastic bending moment diagram of the beam
i5 it possible to satisfy equilibriuvm and to account for a possible change in
the sign of the moment, Fig..{4-c). The bending moment diagram is shifted by a
value of .\Ir. The restraining moment Mris the moment carried over from the

column to the beam when the column achieves collapse. In other wards, Mr s

the moment that the beam should provide in order to stabilize the cciumn, The
restraining moment M , that the beam has to offer to the column at ihe moment
r

cl column collapse, will be attempted to be determined in a simple manzer.

2: DETERMINATION OF THE RESTRAINING MOMENT, M]_

A simple braced frame is considered for derermining the restraining moment.
Twn methods are described for determining the rstraining moment for a single
storey, single bay braced (rame with concentrated loads on the column.

2:1 The First Mathod : The Individual Column Approach

The column capacity for the (rame A shown in Flg.(&-a) is PA, pbased on lb=1.,

If the column is isolated (rom the frame { lu = 1' ) it can only carry lead
PB, Figs.(6~b) & {&-c). The carrying capacity of the individual columrn can be
increased to PA which is greater than Pa by the appiication of restraining
moment M, Fig.(6-d). The value of Mr , required to inqease the carrying

capacity has to be determined. The magnitude ol tha restraining momeat decides
the strength requirement for the beam . The (ollowing assumptions  are
considered for the calculations of the restraining moment M , Fig. (6-d) :-

r

a- The sections possess a bilinear moment~curvature diagram, which is a
reasonable approximation for I-sectlons.
b- The yield criterion used, Rel. (8], is as given in Eq.(&),
N (OIS N M“dxu
P Pe " } (6)
N
L
= 0, B . - —
N = 0.15 \Jp b rad 1.18 Mp (1 N' )
c- The calculations are geometric non-iinear computations based upon
equilibrium in the deformed situation [17.1B8].
d- The columns have parabolic initial deformations, & which include
9

geometrical imperfections and residual strcsses, in which ;

-y 5
& = 8 (~x* + xh) N
h2

where; x is the horizontal coordinate,
h  is the column length.

e- For all rcalculations, the ECCS [ 11 ] buckling curve b is used
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Fig, { ) The rirst methed : The individual celumn approach

2,1.1: Procedure For Determining The Amplitude of Initial Imperfection 5;

For a pin-ended column with a parabolic [nitial imperlection, the {ollowing
differential equation can be decived :

2 -
33
d ‘: rafae . —2 with a?':—-—-——;I (8)
dx h
for x =0 d=0
for x=h 8 =0

P is taken equal 12 PB , on the basis of lb = l,‘ Then 6: is determined so
that the column jus: attains collapse. A plastic hinge then occurs in the
middle of the column.

2.).2 Procedure For Determining The Required Restraining Moment Hl_ If
The Column is Loaded with PA'

From the column 2f Flg. (6~d} the following differential equation can be
formulated ,

d” 3 F @ r’ . 2 P
+ g = - with a' = (9]
dx? n? El.h EI
for x =0 =0
for X =h 5§ = Q

P is iaken egual ¢ PA. on the basis of lb= le.'I‘he restraining moment Mr is

then determined so that the column Just attains collepse. A plastic hinge
occurs somewhnere [n tke columm.
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2.1.3 The Results of The First Mechod

The Figures (7-a) and [7-b) give the results for iwo system slendernesses.
The solid line gives the necessary restraining moment as a f[unction of the
amount of partial restraint of the column, The dashed line gives the reduced
plastic moment as a function of the amount of partial restraint of the column.
Both (igures show that the restraining moment increases. Because PA also

increases, the reduced plastic momeant decrease.

Figure (7-a} is characteristic for system slendernesses As ¢ 100, To the
left of the intersection point in Fig.(7-a), the necessary restraining moment
is greater than the reduced plastic moment. Therefore, the required
resiraining moment cannot be achieved at the top of the column. In this
area,the first method cannot be used with lb= le For ~hecking the column.

M/M— M/ M,

o.52 La

A = 154> 100

X1 2.9 3

'.44 a.8
237 2 ¥ —— Reduced plastic mcment
4.9 a. 4.

0.25 o F —— Restrained moment M
2lo - a.

o[y - }

e.l - o.2

o0.085 o

o. 2

0.3 o35 o8o o8 ."‘3 ¢95 lo  afo o oh o.ag' .3 95 o 113/1:
(@) e/ 2s (b}

Fig.(7) Results for two characteristic system slendernesses [The first method)

F.gure (7-b] is characteristic fTor system slendernesses As ® 100  and in
comparison to Fig.(7-a) is discontinued before an intersection point s
achieved. This is because the model in Fig.(6-d) cannot carry loads greater
than the Euler buckling load based on 1b = le. Also see Fig.(8).
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For areas in Fig.{7) where the restraining moment is smailer than the
reduced plascic moment, lb= Ig. may be used for checking the column stability.

The strength requirement necessary for the beam can be obtained from Fig.(7).
Because of compatibility requirements at the column / beam Jjunctions, a
stiffness requirement for the beams can be derived. This stiffness requirement
is . however, not discussed further in this paper. The individual column
approach for l. & 100 gives a relatively large range where checks on calumn

stability cannot be carried out using lh = | . Tt is shown with a [(inite
o

element method analysis, [3], that the load carrying capacity calculated with
the interactien formula, using lu = le, underestimates the load carrying

capacity , Fig.(9). The bound P*= P: in Fig. {7-b) has no physical meaning but

is a result of the first method, the individual column approach., Therefore the
second method has been developed.
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Fig. ( 8 ) Comparison of finite ¢lement method (f.e.m.) results with Eq.(5)
2-2 THE SECOND METHOD : The Column With Rotational End Restraint
The column of Fig.(6-d) is schematised as given in Fig.(I0). The

resiraining moment (s replaced by am eiastic rotational spring at the top of
the column. The moment Mr at the top of the column will again be calculated.

The assumptions given in 2.1 are again valid. The procedure for determining
the amplitude of the initial imperfection 60 is as described in section 2.1.1.

Rotational stiffness k.

Fig. { 10 ) The second method : The column with rotational end restraint
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2.2.! Procedure For Determining The Required Restraining Moment MrWhen The

Column is Loaded with PA.

The differential equation lor the column shown in Fig.[10) can be derived
as lollows;

-
2 85 M .x
d"é 2 a - . 2 p
ra d=- - with @' =
dx? 5 El.h 1
for x =0 & =o0
for x=h 5=0 and M:k{d(‘;*s“]]
r dx

r

Where ; k is the rotational stiffness of the rotational end restraint.

P is taken equal to P“ on the basis of lb = l.. It is then determined
whether the yield criterion s exceeded somewhere in the column. If net, P“ is

supported elastically by the column. If the yield criterion is exceeded, then
a wvalue of P smaller than PA is determined so that the column remains

elastic. The restraining moment Mr is determined from Eqn (10].

2.2.2 The Results of The Second Method

Figs.(ll~a) and [(11-b) give the results for two system slendernesses. The
strength requirement for the beam can be obtained from these ligures. Becauss
compatibility between the top of the column and the end of the beam is
included in the calculations, a stiffness requirement f{or the beam is no
lenger necessary.

M/ HF’ ™M /MP
045 (A=84<i00} g9 1.-1545 100 -
040 -~ 08 T

f, .7 ,/f

035 - 0 - —— ——Reduced plastic moment
0.30 - 4]
0.25 . 08 ~——— Restrained moment M
0,203 04 -
018 0.3
0.10 0.2
0.05 01

AL ARUI N St M Py e A /3
00?055 03 085008 09510 07 07508 oBEas 066 10 o/ A
(a) (b)

Fig- { 11 Results for two characteristic system slendernesses
(the second method)

(10}
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According to the second method, F'* can be supportied =zlastically for a

large range of elastic elfective slendernesses. For those parts of Fig.(il) to
the left of the intersection points, the restraining moments cannot be
achieved at the top of the column. Therefore, checks on column  stability
cannot be made using Ibn 1.' To the right of the intersection point,the yield

moment MY exceeds the reduced plastic moment for smail system slendernesses.

However, this wiolation resuits in a reduction of the load carrying capacity
(see 2.2.1) by less than 1A . IF this violation is ignared, the check an
column stability to the right of the intersection Points in Fig. (l1) can be
carried out with lu= le. if the beam can provide the necessary restraining

moment

All the results for the second method are summarized in Fig. (12}, In the
shaded area, the use of [h = lc is allewed and the required restraining moment

can be read off. For example, for the slenderness Ae = 100 and As = 120, the
restra‘ning moment Mr = 0.32 Mp. To avoid the use of graphs to determine the
restraining moment, a formuia has been derived. On Linearization of the curves
in Fig.(12), the following expression can be obtained for Mr.

M
= fA)(x -2A) {1)
M P 1 e
P
with A = L0 C ) =13 " 107" + 2.6 x 107
] % {12)
A, > 10 P oMY =17 107¢

When the column is not completely loaded by its carrying capacity PA .
based upon lb= Ie, the beam does not have to provide the [ull restraining

moment according to Eqn.tll). For practical checks,the following equation
should be used. This relationship accounts for the reduced load on the column.

Mr (PE - PP ) N
= r[t\‘)[?ls- Acl HP—T—_T
E A

M (13)

P
Using Egqn. (12) and l'-‘E on the basis ol lu = | .

3 A

2004 " 2004
180+ 180
1604 160~
1404 160
1204 =~ — |20
100~ - 100_—-1
80 80
60'- Nf‘h ’\-}"' 601
{‘0_'3 s HM‘,/Q' ) 40,,3
20 1, 207
0~ = 0

T 1, PR

e S— -
0 2040 60 80 10012000160180200 ¢ 01 0.2 03 0% 05 050708 9 M/M,

Fig. ( 12 ) Summary af the results of the second method
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CONCLUSIONS

~ Design Tlormulae, derived for checking the stability of the (ndividual
column where lb =1 are commonly used with lb =!c for braced [rames,
2

- DOn the basis of a parameteric study, it is concluded that the design
[ormulae can be used with the elastic effective length flh = le] if the beams

can provide the necessary restraining moment.

- So far, there are no design formula available for the necessary
restraining moment.

- In this study, an approximate formula for the necessary restraining
moment has been derived, Eqn.(13) for a single storey, single bay braced
frame, with concentrated loads on the columns.

- Two methods [or determining the necessary restraining moment have been
used. A method based on the individual column approach, is not elfective [or
geometrically non-linear problems |, therefore, a second method has been
developed, using a rotational spring at the top of the column. This rotational
spring has two functions:it generales the restraining moment Mr and accounts

for the elastic boundary condition. The geometrical non-linearity is therefore
correctly taken into account.
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