University of El-Mansoura

Department of Electrical Engineering

Elective Course: Electromagnetic Transients in Power Systems

Final Exam January 2013

Time Allowed: 3 Hours

ATTEMT ALL QUESTIONS (Grades are equally weighted).

1/2

- 1. Initially, the capacitor C_1 in Figure 1 is charged to 100 kV and C_2 is uncharged. The switch S is closed and 40 μ s later the gap G sparks over. Find:
 - (a) The current in R_2 and the voltage on C_1 immediately after sparkover.
 - (b) The energy transferred to C_2 from C_1 at the time of gap sparkover. And how much energy spent in R_1 .

Figure 1

2. Derive from first principles the expressions for the voltages $v_{c1}(t)$, $v_{c2}(t)$ that will appear on C_1 and C_2 , respectively, and the current i(t) that flows in L, after the switch is closed in the circuit shown in Figure 2. Sketch $v_{c1}(t)$, and $v_{c2}(t)$, and find the maximum voltage attained by C_2 .

Figure 2

3. Figure 3 shows two capacitor banks, C_1 , 5 MVAR and C_2 , 3 MVAR on 13.8 kV base. The source has a short circuit rating of 20 kA rms at 13.8 kV. The inductance of the loop between C_1 and C_2 , represented by L_2 is 30 μ H.

Calculate the peak transient voltage that will appear on C_1 and C_2 , respectively, and the peak transient current that will flow in L_2 , if the switch is closed at the peak voltage cycle. Point out any assumptions you make.

Figure 3

4. The following characteristics apply for thr line cable feeder shown in Fig. 4: Overhead line: Characteristic impedance $Z_{\text{line}} = 400 \,\Omega$

Line length $L_{line} = 3000 \text{ m}$

Propagation velocity of the electromagnetic waves

 $M_{ine} = 300\ 000\ km/s$

Cable Characteristic impedance $Z_{\text{cable}} = 40 \Omega$

Cable length $L_{\text{cable}} = 100 \text{ m}$

Propagation velocity of the electromagnetic waves

 $V_{cable} = 100 000 \text{ km/s}$

The circuit breaker closes at t = 0 for a unit-step input voltage. Sketch the voltage profile at the line-cable junction for t = 15 μs

Figure 4