Menoufia University
Faculty of Engineering
Shebin El-Kom
Mechanical Power Eng. Department
Post Graduate: Diploma

(4.2)

Subject: Theory of combustion (MPE 525) Academic Year: 2019-2020

(15 Marks)

2nd Semester

Time Allowed: 3 hr. Total Marks: 100

Date: 13/8/2020

Note: Assume any data required, state your assumption clearly. Answer all the following Questions

Combustion tables are allowed

Combustion tables are allowed	
Question (1)	(25 Marks)
(1.1) Explain detonation, deflagration and Hugoniot curve.	(10 Marks)
(1.2) The lower calorific value of a liquid fuel at constant pressur 44000 kJ/kg. The analysis of fuel by mass is 84% carbon and 1 hydrogen. Determine the higher calorific value at const pressure and the lower and higher calorific values at const volume. At 25 °C, h _{fg} for H ₂ O is 2442 kJ/kg.	L6% tant
Question (2)	(25 Marks)
(2.1) Explain: Greenhouse effect, Dissociation, Endothern Exothermic, Activation energy and Bond energy.	mic, (10 Marks)
(2.2) Calculate the adiabatic flame temperature when methane but in the presence of air at constant pressure process at 600 K are atm, having (a) 50% excess air and (b) 20% less air, leading incomplete combustion. Calculate the loss of thermal energy to incomplete combustion. Take the mean value of C _p methane as 52.234 kJ/kmol. K.	nd 1 g to due
Question (3)	(25 Marks)
(3.1) Define the flame and explain its types.	(10 Marks)
(3.2) Explain: Quenching, Flammability and Flammability Limits. A Prove that $d=\sqrt{b} \ \delta$ using simplified quenching analyses.	Also (15 Marks)
Question (4)	(25 Marks)
(4.1) Defined: Ignition, (using simplified Ignition analyses) Pr	ove (10 Marks)
$E_{igst} = 61.6 P \left(\frac{C_P}{R_b}\right) \left(\frac{T_b - T_u}{T_b}\right) \left(\frac{\alpha}{S_L}\right)^3$	W1.23

مع تمنیاتی لکم بالنجاح والتوفیق Dr. Mohammed Said Farag

Discuss the factors influencing flame velocity and thickness.