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ABSTRACT

In this paper, a method of lines is proposed for solving partial
differential equations. A suitable spatial discretisation is introduced,

then the numerical examples show that the method of lines is feasible

and very effective for solving parabolic problems. oo

INTRODUCTION

The method of lines, MOL, is an approach to the numerical
solution of quite general partial differential equations, PDE's , that
: involve a time variable # and one or more space variable x,y,... .The

partial derivatives with respect to the space variables

are discretized to result in an approximating system of ODE's in

the variable 7 . Two of the factors inﬂuencing the performance of the
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method of lines are the choice of a spatial discretisation method and the
positioning of the spatial discretization points.

The points should be chosen so that the computed solution accurately
models the exact solution to the PDE . Once the spatial mesh has been
chosen, it is desirable to integrate the ordinary differential equation
ODE system in time. With just sufficient accuracy ,so that the temporai
error does not significantly corrupt the spatial accuracy.

The purpose of this paper is to present a good spatial discretization
method with diverse number of points, which introduce more accuracy
when applied method of lines to solve PDE's as illustrated in section
4.This paper is structured in the following way. in section 2 new
derivation of analytical form for approximation the spatial derivative
was presented. This allows the main contribution of the paper to be
given in section 3 where this approximation was used in solving PDE's

b'y"‘tf‘fe method of lines. Finally, in section 4 discussion of the numerical

experiments is presented.

DERIVATION OF ANALYTICAL
APPROXIMATIONS FOR FUNCTIONS

We turn now to the production of analytical approximations for
functions defined explicitly, that is, in closed form. Such functions may
include polynomials, infinite (Taylor's) series in powers of x, rational

functions, and so on . We consider the function fx) defined in 0 s x S 1

,the analytical series is given by

fg=2, @i(x), M)

1=0

192



A GOOD SPATIAL DISCRETISATION IN

In numerical practice we cannot use the infinite series, and we rely on a
finite approximation of suitable accuracy.
This is obtained most obviously by truncating the series (1) at a suitable

point, giving the polynomial

f(x)=;) a.(x)y, @

where 0 SXSmh  m;m=246,......... and we consider y(x) €C"

If we approximate y(x) by constant, linear function, second order
polynomial, and so on , to the m order polynomial, this leads to m + I
equations in /m + 1 unknowns.

We can solve the resulting system analytically to obtain 5, as terms
of x variable, and this present-an approximate to.the function f(x) . If
we want to approximate the first derivative of /' (x) we differentiate the
result, and similarly to the higher derivative of f{x) . The resulting of

our computing presents in the following tables:

i-By using three points:

2
y(x)=zcg(x)yi OSxSZh,y(x) ECzjlet Z=]£,then
=0 ’ ’l

3
a, =1 - —z+ —z°?
2
a, =2z-2z"°
~ 1 1,
a, = —z+ —z
2 2
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thus, the approximate for the first derivative:

| d La\ | 4’
-3 14 | -1
[_1 o io . §1 ......
|1 -4 '3
where ai ,i=0,1,2 factored by 5-1;7 . For the second derivative
ih

ao L a'l }f a s
!

-3 4 -1

1
where a'i,I=0,1;2 factored by Zihi

1i-By using five points:

4
$) = > a(x)y, 0<x<4hy(x)ec® then
i=0

2535 5 5 4, 1.

1
a,=—z+—z" +-z"——z"
3 6

194



A GOOD SPATIAL DISCRETISATION IN
Thus we can compute the first, second, third ,and fourth derivative as

follows :

the approximate for the first derivative

§ao

a: az

.25

48 1 -36

-3

T 18

'-8 o

1

3'3' :

-16 ] 36

The approwmate for the second derlvatlve

ao

i
i

a l

02

a's

a a

35

i
i
i

-104

114

11

-56 |

-1

|
|
E
T §

T

16

T

-1

ST

- 56

i

114

35

The approximate for the third derivative

a’ | a s

14

S

|
|
-
|

T
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iii.- By using seven points :

49 812 , 49 5 35 , 7 5 1

z+——2z .
20 360 48 144 240 720
87 +2_923 _gl s 1 s 1

zZ zZ z
6 247 6 120
15__117 , 461 5 137 , 19 5 1 ,

-——z
T3 8 48 48 48" 48
20 127 , 31, 121 , 15 1 4

ay,=—z——2Z —z' ——z

Z Z

3 9 3 36 2 36
17 5,1 & ;
2> +

15 33, 307 , 107 ,

a4 =——z4+—z —-——z +—Z Z

47 4 48 48 48" 48

a5=§-z——2—722+£z3——224+125 ! z°
5710 6 247 157 120

1 137 , 5 5 17 . 1 5 1

ag =——z+ —

—z -zt —z ——z +
6 360 16 144 48 720

And from this system we can compute an approximate to the first,

second, third,
fourth, 5" and 6™ derivatives as follow

@ |a la la la |a | a
1764 | 4320 | 5400 | 4s00 | 2700 |'sea | 120
o Tme Ta0 T 12t ]
e o T o o o s
2 2 B S e T

12 |9 360 960 | 420 288 24

24 | 180 600 | 1200 | -1800 | 924 120
120 | 864 | 2700 | -as00 | sa00 | 4320 | 1764
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The approximate for the second derivative

e L S

- 548 -388 . 11880

'Thé;é‘}ppr(‘)"ﬂlhé\té for third derivative.

3

4onblsy

'1;“‘?““: ) 44'640' ‘ 1?27630 AN It

5760 | -2610 |

4320 | 2610 |

170 | o 1170
| <2610 | 4320  |:aim3d60 o
| 2610 | -s5760 | 7470 |

| P e
The approximate for-the fourth.derivative:«- ov 31 ane

() 4

EH s TN I S FE A TR TRt HI TS CUARR AN E 22 S IS R
L SET0 R § e AXFRSINTE HE
(25

i 49350
iy 20520

s L
U 4680 |
720 | -1080
32001 H33eem
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The approximate for the 5" derivative

()), .

R }_ T e §"&65"'§”'<” : i |
0 | 1 i 2 { 3 i 4 i i
-2520 | 14400 | -34200 | 43266”;;"l30600 | 11520 | -1800 |
1800 | 10080 f"-23400 ] 28800 | -19800 | 7200 | -1080 |
V"-1080 | 5760 | -12600 | 14400 | -9000 | 2880 | -360 |
=360 | 1440 | -1800 | 0 | 1800 | -1440 | 360 |
360 | -2880 | 9000 | -14400 | 12600 | -5760 | 1080 |
1080 | -7200 | 19800 | -28800 | 23400 | -10080 | 1800 |
|

1800 | -11520 | 30600 | -43200 | 34200 | -14400 | 2520

The approximate for the derivative

N S S S A

720 -4320 10800 § 14400 10800 f -4320 720

Where a; ) (Z, , Cl, s 1 , (l,(»S) ) aﬁb’ , i=1,2,3,4,5,6 factored by
1

6t

iv-By using eleven points:

We cannot use the 11-point formulas naturally in all numerical
MOL applications. If we could be assured that the spatial variation of
the POE will always be a polynomial, this would be logical But in
general, this will not be the case .Also all of the preceding
approximations for the derivative are based on polynomials. However,
polynomials of increasing order have derivatives with an increasing
number of roots.

For example ,the fourth-order polynomial, which is the basis of

table (1), differentiates once to a third order polynomial that has three
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roots; at each of these three roots, the polynomial will therefore have a
maximum or a minimum, suggesting that it can oscillate betwcen three
maximum and minimum values. Similarly ,a tenth- order polynomial
will have nine maxima and minima, and it will in general oscillate
between these nine values. in other words, as the order of the
approximating polynomial increases, the possibility of unrcalistic
oscillation in the numerical method of lines solution of PDE also
increases, and this is frequently observed. Schiesser [4] concluded that
the fourth-order formulas of table (1) are good compromise between
accuracy, and the minimization of oscillation. Other approximations
can be used that might be better behaved (not have the oscillation of
polynomials) .

In fact, essentially any approximation can be considered for the PDE
spatial derivatives, and some approximations will generally be found to
be better than others. Thus, the numerical method of lines is really
open-ended, and can be implemented in many ways. Commonly used
approximations for PDE spatial derivatives include splines, finite
elements, and weighted residual methods. We could obviously devote
much more discussion to the development of spatial derivatives
approximations, but in order to keep the discussion to reasonable
length, we shall consider a few other selected polynomial

approximations that have been useful in the solution of a range of PDE

problems.
Method of Lines Approximations

To illustrate MOL approximations, we consider the problem discussed by

Hicks and Wei[2] :
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where we often consider Z ajiui as a finite difference
d’u _ ou

ox® Ot

In dealing with, for example," 5" point central difference
approximations to the second

approximation to

partial derivative, Fisher[1] proposed that, at the end points, where
2
du, du,
u N> 9 2
dt dt
all equal zero. This assumption leads to the requirement that

Uy =Uy, and u_(N+1) =—M_(N_l) . All equally spaced central

difference approximations to the second derivative are symmetric in the
values of the coefficients of the ¥ j about the central point.

In [2] Hicks and Wei mentioned that; the use of a central difference
approximation of order greater than "3" point requires explicit
specification of dependent variable values outside of the interval of
interest (-1,1) , and they consider the use of non central difference

approximations. The well known second order finite difference

(x;)

dx
du(x;) _ u(x;,) —ulx,,)
dx  2Ax+0(Ax)
and this equation can be applied over spatial grid at points i = 2,3,4,... s

N-1
However, a problem occurs at the end points i = 1 and i = N,

Approximation for the first derivative is given by the equation

)

equation(3) requires 2’l(';'CNJrl) which is also non existent. Schiesser [4]

developed an
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du(x)
approximation for —"d—— that requires the use of the points u(x,) ,
x .
u(x,) and u(x,)
.. . . du(xN) e :
Similarly, he developed an approximation ——}—He gave "3" points
dx

formula and" 5" points formula, indicate to '"9" points formula and"
11" points formula for first and second derivatives. Here we complete
his work in "7" points formula and introduce the derivative up to m

order.
As known any stable, convergent numerical algorithm applied to

solve the system of ordinary differential equations by MOL will then
also produce a stable, convergent numerical solutions of the equations,
and consequently produce a stable, convergent numerical solutions of

the associated partial differential equation.
Whither or not the use of higher order approximations will improve
convergence depends on the improve of the higher eigenvalues. As the

2

' u . .
number of points '"'n' used to approximate P is increased (keeping
X

N, the measure of number of divisions of the x interval, constant ), the
eigenvalues of the approximating system of ordinary differential
equation must be all real and negative. Equations (3) for a "3" point
centeral difference are in matrix form

2 10 0 .. 0 0 1[me | [au, ]
1 2 1 0 . 0 0 dr
1 0 1 2 0 .. 0 0
F =
: . . . L du
0 : : : 1 2] Uy | L dt
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O
r h?.

where /1 = i then:
N

2N-1 ¢
U= Z ¢ Lk, expéﬁh2 )
k=1
where A, are the eigenvalues of A3, Ej are eigenvectors of A; and Cy

are the Fourier coefficients of (2)' .
The eigenvalues of Az are given by :

4 =-242c0s | k=12, 2N~
2N

Now, as in [2] , we can show, by direct calculation (for 11 = 5,7,9,11) ,

that the recursion formula:

n-1

e n-3 n-l
A4 =(—1) 2 {(—5—) ':[Z/% 2 +(n—1) (H—Z)A”_z 5)

hold.
" The significance of (5) is that each of the matrices, 4, , is a polynomial

in Az ,and therefore ,commutes with Aj ,whichb implies that A, has the
same eigenvectors as Az Now the eigenvalues of Az are all real and
negative. Formula (5) can also be used to compute the eigenvalues of 4,
, which are always real and negative, and which approach the
eigenvalues of (1) with increasing N, as shown by Fisher [1] .

Hence, the formulas which introduced ,in section (2) give stable,

convergent numerical solution of equation (1)' basis on the recursion

formula (5) .
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4. Computer Experimentation:
Simple example of the use of this method is given in schiesser [4],

the testing that was carried out developing the method had been shown
in tables with (3,5,7) points formulas on parabolic problems. Similarly
we can apply the same method on elliptic problems. Detailed results of

tests on the hyperbolic problems are given in [3]

Problem(l): Consider the special case of Heat conduction equations:
Up = Uy ey

u(x,0) = sin(%)

u(o,t) =u(l,t)=0
2)

where exact solution for this problem is
— 2 2 -
u(x,t) =" " sin(zrx/ L)

For L=1,0 Sl.<_0.5 , 0SxZ1,N=51,h =% , the output from Matlab

programs 1s m table 1))

t | x I'moL3 | MOL5 | MOL7 | Exact |
T ol ot [ osto o '§5"'0.1152 )
02 | 02191 ] 02699 ] 03030 | 02191 |
03 ] 03017 [ 03395 ] 03624 | 03015 |
-""'6"'4 | 03545 | 03848 | 04042 | 03015 |
0.5 | 03729 | 04006 | 04177 | 03727 |

T‘lb]C(I) MOL solution of equatlons (1),(2) using (3,5,7) points for
spatial approximation
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Problem(2):
Uy = Uxx
u(x,0)=1 ,0<x<1
Qf‘._: at x =0 forallt
Ox »
ou | 3 ]
—=- at x =1 for all
Ox
with N=51 and 0<t<0.01, we listed the results in table II
1
For L=1, 0<¢<0.5 , 0<x<1 ,N =51 ,hzg6 ,

the out put from Matlab programs is in table ) .
K Tx  [MoL3 [MOL5 [MOL7 | Exact

it
(00025 [01  [08289  [1.0000 [1.0003 [0.9951
[0z [09945  [1.0004 [1.0001  [09999
04 [1.0000  [1.0000 [1.0001 _ |1.0000
[05  [1.0000  [1.0000 [1.0000 | 1.0000
Table(II)
CONCLUSIONS:

From the example problems, it appears that the spatial
approximation will give best result to any problem which can be
solved using method of line if we used the 3point formula. These
results indicate that the increasing of the points of the formula,
cannot bring the MOL and exact solutions into closer agreement.
Although this is logically theoretically. The previous results
conformed on parabolic problems , but not necessary conformed
on Hyperbolic or elliptic problems, where the

Hyperbolic problems were sensitive by the increasing of
the points of formula. However, the previous tables in section 2
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are too useful. tool for many kind of problems which based on
approximate function or derivatives.
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