Mansoura University **Faculty of Engineering** Eng. Math. & Phy. Dept. Total Marks: 130

Time: 3 hours

MATHEMATICS (2) - Preparatory Year

Final Term Exam.

Part (I)-Integral Calculus

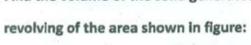
(a) Evaluate each of the following integrals:

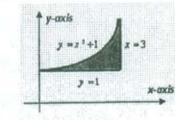
Question (1): [38 Marks]

$$(i) I = \int x^2 \cos 3x \ dx$$

(ii)
$$I = \int \frac{\csc^{-1}(1/x)}{\sqrt{1-x^2}} dx$$

(iv)
$$I = \int_{-2}^{2} \frac{1}{(4+x^2)^2} dx$$


(iii)
$$I = \int \frac{5}{3\cos x + 2\sin x + 2} dx$$
 (iv) $I = \int_{-2}^{2} \frac{1}{(4+x^2)^2} dx$
(b) Drive a reduction formula for the integral $I_n = \int \cos^n x \ dx$. Hence, find $\int (\sec x)^{-4} \ dx$.


(c) Determine if the following integrals are convergent or divergent:
(i)
$$I = \int_{-\infty}^{\infty} \frac{x}{x^2 + 3x + 2} dx$$
 (ii) $I = \int_{-\infty}^{3} \frac{1}{\sqrt{3 - x}} dx$

$$+3x + 2$$

(ii)
$$I = \int_{-\infty}^{3} \frac{1}{\sqrt{3-x}} dx$$

(a) Compute the area bounded by
$$y = \sin x$$
, $y = \cos x$ and $y - \alpha x is$.

(i) about
$$x = 3$$
.
(ii) about $y = -1$.

(c) Determine the surface area of the solid obtained by rotating
$$y=\sqrt{9-x^2}$$
 , $-2 \le x \le 2$ about x-axis.

(d) Use Simpson's rule with
$$h = 0.1$$
 to approximate $I = \int_{0}^{1} e^{x^{2}} dx$.

- 3) a) Find the equation of the line through (3,6) which makes an angle $tan^{-1}3$ with x-axis. Then find the equations of the lines which parallel to it.
- b) Prove that the two lines: $x^2 + 2xysec\alpha + y^2 = 0$ are always real and the angle between them is α . Then find:
 - (i) The equation of their bisectors.
 - (ii) The equation of the pair of lines passing through the point (2, 1) and parallel to (i).
- c) Given the conic section whose equation is:

$$4x^2 + 9y^2 - 48x + 72y + 144 = 0$$
 (35 marks)

Find its center, semi - axes, vertices, foci, the length of LR and graph it.

4) a) Find the equation of the plane passing through the line:

$$x + y + z = 6$$
 and $2x + 3y + 4z + 5 = 0$

and perpendicular to the plane 4x + 5y - 3z = 8

b) Find the equations of the spheres which pass through the circle:

$$x^2 + y^2 + z^2 = 5 \quad , \quad x + 2y + 3z = 3$$

and touch the plane 4x + 3y - 15 = 0.

c) Discuss the nature of the surface whose equation is :

(35 marks)

$$x^2 + 2y^2 - 3z^2 + 4x - 4y - 6z - 9 = 0.$$

Find the equation, center and axes of the conic sections obtained by cutting the given surface by the planes x=-2, y=1 and z=-1, respectively.