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ABSTRACT
Analysis of unsteady compressible flow plays an important role in design and performance
Pediction in many diverse engineering applications. The generated flow fields in most cases
3| Molve strong  pressure discontinuities, high temperature differences between gas layers and
& "ropy interfaces. Two first order schemes of the modified method of characteristics and
s 1% recently developed finite difference schemes, are applied to the one dimensional,
; Clional and heat transferring gas flow problem. Comparison is made with a shock tube
i Moblem, rightly considered as a test tube for flow prediction procedures. The test tube has an
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analytical solution as well as experimental measurements for comparison and evaluation of
friction and heat transfer effects. The eariiest and most widely used modified scheme of
characteristics [5] is shown to be inadequate to cope with flow discontinuities. The overall
implication of analysis of results, proves that the first order scheme, which is based on
physical interpretation of the characteristics numerically, have very good ability to deal with
discontinuities, showing low computer time as well as simple coding. Despite the accuracy of
higher order schemes, they produce non-physical oscillations which should be meditated using
artificial damping procedures.

INTRODUCTION

Good progress has been made in the field of unsteady compressible flow applications in the
last three decades. This is credited, in essential part, to the development of numerical techniques
suitable to handle the complex unsteady flow problems. Unsteady flow in which there are large
amplitude vanations in the flow properties occur in such applications such as thrust augmenting
pulse ejectors, pulsed combustors, pressure exchangers, inlet and exhaust piping of internal
combustion engines, propagation of explosion and detonation waves ... etc.

The flow fields in such applications always develop pressure, temperature and entropy
discontinuities. In addition, to temperature differences between gas layers, or the addition of fluid
of non-unifonn entropy to the duct in which unsteady flow occurring, waves overtaking each other
into shock waves also persist. Friction and heat transfer also add to the change of entropy along
particle path lines. For example, unsteady flow in the exhaust pipe of supercharged 1.C.E. reported
by [1] and flow in pulsed combustor by (2], the temperature differences between gas layers of
exhaust gas and fresh charge may exceed 1000 °C and pressure ratios may be more than 4.

The finite difference approach may be divided into two categories. In the first, the method of
characteristics in which the fimte difference approximations are derived using the
properties of characteristic directions which have real slopes if the system of differential equations
is hyperbolic. In the second category, which for the purpose of the present work shall be called
straight forward finite difference terms, replace partial derivatives with  little
premanipulation of the equations.

The one dimensional unsteady gas flow requires the use of special techniques to solve the
describing hyperbolic partial system of differential equations. The flow properties at each point of
the flow field depend on those in finite region of upstream flow and independent of properties
downstream. Hence, a characteristic concept is defined as the path of physical disturbance and the
partial differential equations can be reduced into total derivatives along characteristics [3].
Practical unsteady flow calculations in supercharging I.C.E. came into use more than 40 years ago
by Jenny [4]. These hand calculations are extremely tedious and time consuming. The first
application of computer using numerical technique to solve the unsteady flow problem is reported
by Benson [5,61. It is a first order scheme modifying the method of characterisfies to suit coding
by computer. The method has been widely used and can cope with friction and heat tmsfer by
modifying the homentropic solution. However, the present study shows that the method fails to
handle the presence of discontinuities. Spalding [7] introduced a first order discretization scheme
based on physical interpretation in the integration of the differential equations along characteristics
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in hybrid method. Marzouk et al [8] applied the First order technique of characteristics to pulse
ejector problem without taking heat transfer and friction into account and pulse pressure ratio was
low.

Recent stage of development is represented by application of straight forward finite

difference methods, by expanding equations in Taylor series with respect to time and replacing
time derivatives by space derivatives approximated by central, forward and backward differences.
Lax [9] introduced a first order accurate finite difference explicit scheme. The work by Abdul Aziz
et al [10] compared some numerical methods to guide specialists to choose the appropriate scheme.
However, this work was based on shock free flow without friction and heat transfer effects. Also
the order of discretization of the higher order schemes also changed at the boundaries which makes
this comparison inadequate. Hewedy et al [11] applied Lax-Windroff second order scheme [13] to
study the behaviour of pressure waves in variable area ducts. The order of discretization also
changed at boundaries and the wave pressure ratio is low such that the flow is basically
homentropic.
The present study gives researchers the opportunity to select appropriate technique when the
unsteady flow field develops strong discontinuous. Five numerical techniques are tested.
Comparison is made with a shock tube problem, rightly considered as a "test tube"” for unsteady
compressible flow prediction procedures. This allows the generation of as strong shock waves as
required and high temperature differences between gas layers of non-homentropic flow. The
problem has an analytical solution [151 and experimental measurements for comparison and
evaluation of friction and heat transfer effects.

THE MATHEMATICAL MODEL

The one dimensional unsteady viscous and heat transferring flow is described by the
system of differential equations for conservation of mass, momentum and energy in constant area
pipe. It is represented vectorially with right hand side includes perturbation terms of friction and

heat transfer [14,15]
.
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Since the gas pressure and temperature are far from the critical values, the state and caloric
equations take the form.

P=pRT )
e=CyT (3)

Equations (1), (2) and (3) are used to reduce the system of conservation laws as follows:
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repesents the friction force per unit volume and

4pCpu(Ty -T)
d

represents heat transfer per unit volume per unit time.
The values of friction coefficient and Stanton number Cyand S, are estimated from boundary layer
theory or may be taken as functions of non-dimensional parameters like Reynolds number.

q=>5

Mathematical and Finite Difference Procedures:
1. THE MODIFIED METHOD OF CHARA CTERISTICS OF BENSON [5,6):

The method of characteristics is based on the transformation of the non linear PDE into
ordinary differential equations along characteristic curves. The conservation equations (1), may be
written as follows in the dependent variabtes p,p and u, along the characteristics.

dp du dx
—tpa——-(y-l{g+ufjzal=0 along—=uta
at p m (v - 1){q J gdt (5)

%%—agi—?w(y—l)(q+uf)=0 along;gtm.l:ta %)
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Benson [5,6] introduced a first order numerical technique modifying the hand calculation
procedure by [4] It employs a rectangular grid in space and time. The solution is obtained at each
node of the gird by integrating the equations along the two Reimann characteristics and  the
particle path line homentropically and then adding friction, heat transfer and entropy
modifying terms.

If a, represents sonic speed at entropy level s, of a reference pressure, the change in

Retmann variables and entropy level, &, B and a, (taken as main dependent variables), are obtained
through finite differences along the characteristics having slopes.

where

dx
— =uta, — =
dt dt
in the form:
p— 2 _—
di,dp =dfa * r-l uj=a das + tr 1) (q+ufidt¥ =4 —f—dt
2 ap 2pa 2 p
(7
along A, B Characteristics and
day _(y-1)
S2a 0 g+ uf) 8
an  2pa’ (8)

along particle path,

Equation (7) and (8) are integrated along the respective characteristics to obtain the difference
equations and march the sclution provided that the condition of stability

At < 1 , is satisfied.
Ax " u| +a

In this method, it is considered that the change in Reimann variables and entropy along
their relevant characteristics, is sclely due to friction and heat transfer ,ie. the flow isnon-
homentropic from the point of view of entropy change along the path line. this is not the case when
the flow field generates shock waves, temperature and entropy discontinuities where the reimann
variables A, P vary along their relevant characteristics due to change of entropy level across such
discontinuities. For problems with low pressure ratio, such as those studied by [4,6], the entropy
discontinuity has minor effects on the solution. However, for high pressure ratios , they would be
highly influential. This is the basic reason for failure of this procedure to cope with the
discontinuity when it is applied, in the present study, to even an adiabatic frictioniess shock tube
problem with pressure ratio of 10 and initial uniform temperature.
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2, THE MODIFIED METHOD OF CHARACTERISTICS OF SPALDING (7]

This modified version is a first order technique that combines the use of characteristics
with rectangular grid. Though the following characteristic equations can be shown to be the same
as eqns (7) and (8), they are presented in the new dependent variables p,u and s to demonstrate the
difficulties that must be encountered in dealing with discontinuities. For concise presentation the
dependent variables are taken as

y~1

b v -1 -1
P=(p) ,U='T u,czcxp(jQ—s)

Hence Equation (7}, (8) take the form.

d(Pci-U)=DdttE§dtiGdt alongd—xzuia 9
ax dt
do =oF long — =1 10
c=c alon T (10)
where
-1 a -1, 2
D=7 Zq+u, E=()a
2 ' p 2
v-1 q+uf y-1 aQI
F=[—) —, G= () —
2y p 2y p
and

£% dt=+pdoTiDdt
ox ¥

The term Pdo in the last equation does not vamish for a discontinuity along Reimann
variable characteristics. The problem is that the dependent variables are not known in advance to
set a solution so that an iterative procedure may be applied. Based on physical interpretation of a
shock tube flow. the pressure in the integral is shown to be equal to the new pressure level P; [7].
The subscripts N,M and J denote crossing points of the reimann and path lines characteristics form
point 1 at the new time level as shown in figure (1).

Hence the solution is obtained in explicit form as:
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Subscripts MI, NI and JI denote average values over the relevant characteristics. The method is
also stable provided that

a1
At ul+a

3- THE LAX SCHEME [9]

This is an explicit first order method . It is well known for its large dissipation error. 1t is
used to show clearly the main features of a first order accurate scheme. The method takes the
following form with reference to equation (4).

1 At
Wi = -S(Wf}fl + Wity _E[ {1 - iril]““ At{sfn - in—ln
(14)
The method is stable provided that the following condition is satistied:

4- THE SINGLE STEP LAX-WENDROFF SCHEME [12]

This is a second order scheme both in time and space, i.e, the truncation errors are O(At’, Ax*).1t is
generated by developing eq.(4) into a Taylor’ series with respect 1o time and replacing the time
derivatives by space derivatives approximated by central differences  The method takes the
following form:

1 At LAt
Win+1 - wh __Q_Ex_(Fi‘ll -F)+ At St + E('A;]Q

F/0 +F{"FS, -FRF/™ + F/TF° - F2 ) 1ol

i+l 1+1 1
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where F' is the Jacobian matrix and is defined as:

/=3F
T
(
0 1 0
F’:,E—luz G-7)u y -1
2 (16)
,[}’_lus_ ¥ ggj (3—72:»’112_7’—1% "
W2 r=1p 2 Yy p )

The method is stable provided that the courant-Fredrich-lewy condition is satisfied as follows:

At 1
— <

ax [+a

5- THE EXPLICIT MACCORMACK METHOD [13]

The explicit MacCormack scheme is second order accurate in space and in time . It has a
predictor- corrector explicit algorithm as follows:

- At

Wi = wi - F R v arsy (an
n+l _ }_liw.'n Wl At (F_n-a-l N F_n-ii-ll + At SP+1-I1 (18)
i 20! boAax ! ' o

The two step process consists of evaluating derivatives by one-sided differences taken in
opposite directions during alternate steps for symmetric calculations. The first equation calculates
a temporary predicted values of W and F vectors. The corrector equation provides the final value at

the time level n+l. The method is stable provided that the product q”kmax " <lwhere q=AV/Ax is
the maximum eigenvalue in the jacobian matrix F.
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TEST PROBLEM

The shock tube problem as shown in Fig. (2) is investigated and two cases are considered
Case 1: A tube of pressure ratio 10 across the diaphragm and uniform initial temperature excluding
the effect of friction and heat transfer is considered. This case is compared with the analytical
solution [16] to basically distinguish the performance charactenistics of each numerical scheme.

Case 2: A tube of pressure ratio 9.8 and uniform initial temperature with 1 3/8 inch inner diameter.
This tube 1s so selected in order to compare with the available experimental results [17]. The
problem is solved analytically and numerically with and without the friction and heat transfer
effects. For both cases the tube length is selected such that no interaction between the schemes and
the boundary conditions is accomplished and thus all schemes maintain their order of
discretization. Based on properties predicted for the adiabatic frictioniess flow field, fixed average
values of the friction factor and Stanton number are taken to be 0.00175 and 0.00125 respectively.

RESULTS AND DISCUSSION

Computations were carried out using five coded computer programs written in C language
on an IBM personal computer. The results of case 1 after .5 ms are presented in Figures (3) to (§)
in which the numerical solution without friction and heat transfer, i1s compared with the analytical
frictionless adiabatic solution.

Figure (3) represents the results of the modified characteristics according to Spalding. The
corners at the end points of the rarefaction waves are rounded. This may be attributed to the
interpolation that must be used with any numerical technique. The constant state between the
contact discontinuity and the shock wave is fully realized. There is a slight dewviation from the
analytical solution in the smooth regions. However, all the internal features of the shock wave
events are preserved.

Figure {4) illustrates the results using Lax method. The contact discontinuity is barely
visible in the density profile. The comers at the end points of the rarefaction waves are highly
rounded. The constant state between the contact discontinuity and the shock wave is barely
existent. It is clear that this scheme entails extremely high dissipative errors.

Figure (5) shows the results of the Lax and Wendroff scheme. There are slight overshoots
at the shock wave and more noticeable overshoots at the contact discontinuity. The rarefaction
waves are predicted’ accurately. The corners at the end points of the rarefaction waves are only
slightly rounded.

Figure (6) represents the results of the MacCormack Method. there are certain overshoots
at the contract discontinuity and the shock wave. The rarefaction waves are very accurate. the end
points of the rarefaction waves are only slightly rounded. It may be observed that results of figure
{6) are quite similar to those of figure (5).

From the previous analysis it s evident that all methods produce one of two error patterns.
First order methods show an inaccuracy in the solution at regions far from steep gradients. Also
smearing in the solution at steep gradients are always exhibited. Higher order methods despite their
accuracy in smooth regions and prediction of steep gradients without smearing, produce non-
physical oscillations at sharp gradients. The methods have to be incorporated with damping
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procedures to suppress the oscillations. The phoenical flux comection method 10 suppress the
oscillation, has been used for all higher order schemes.

The computation 's time duration is primarily a function of the numerical method itself and
efficiency of the computer program and these are the time duration of each scheme for case 1:

[ Scheme CPU time, sec.

| Lax Scheme 15
Modified Method of Characteristics of Spaiding 59
Explicit MaeGormack scheme 96
Single Step Lax Wendroff Scheme 98

The results of case 2 are presented in figure (7) to (10) in which the algebraic frictionless
adiabatic solution is compared to the numerical solution without friction and heat transfer and to
the numerical solutions with friction and heat transfer and the previous results are compared to the
experimental results. The comparison is performed after 15 ms form the rupture of the diaphragm.

Figure (7) represents the results of the modified method of characteristics of Spalding. The
method predicts the velocity and pressure distributions for the frictionless adiabatic flow fairly
accurate, but that the sharp corners are rounded.

Figure (8) shows the results of the Lax method The scheme entails high inaccuracy. The smearing
effect and the friction effect have produced a solution far from true not only from the analytical
view point but also from the comparison with experimental results.

Figure (9) shows the results of the Lax and wendroff method. The method shows very good
velocity and pressure distributions for both the ideal and actual cases but the numerical shock is
somewhat faster than the analytical one. The method exhibits a very good resemblance with the
experimental results .

Figure (10) represents the results of the MacConnack method. The scheme is quite accurate
when comparing the analytical solution with the numerical solution without friction and heat
transfer except for a slight overshoot at the contact discontinuity. However, the numerical solution
with friction and heat transfer is quite inaccurate in the velocity and mass velocity profiles.

It may be concluded that the first order method of Spalding shows the least smearing and
high accuracy. The higher order methods are generally more accurate but with unrealistic spikes
and ravines that appear with discontinuities . One higher order method that exhibited the least
oscillations after the application of the damping method is the Lax-Wendroff second order method.

CONCLUSIONS

The modified method of characteristics of Benson fails to handle the shock tube problem. It
can not deal with problems of high entropy gradients because it is not incorporated with entropy
modifying terms 1.e.it adopts the homentropic flow cases of low pressure ratios.

Lax scheme proved to be the fastest in obtaining a solution but at the expense of accuracy
as it shows large dissipation errors. The other methods showed comparable CPU times in both the
frictionless adiabatic and the actual cases but with different performance characteristics.
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From the accuracy peint of view , the methods except Lax highly dissipative scheme,
showed relatively comparable error levels but with first order methods showing some smearing at
the end points of sharp gradients while higher order method showing certain dispersive errors in
the form of spikes and ravines at sharp gradients which had to be damped in order to obtain stable
solutions

The modified method of characteristics of Benson and Lax scheme are not recommended
for the study of high pressure ratio unsteady flow phenomena since the first scheme fails to handle
the entropy discontinuities and the second preduce high dissipation errors.

The higher order methods are ideally suited for unsteady flow problems where no sharp
gradients can appear. The solution becomes oscillation free and superior to first order methods
from the accuracy view point.

The first order method of charactenstics of Spalding is one method that is superior to
higher order methods due to its oscillation free solution, especialiy at sharp gradients and low error
levels but at the expense of some smearing of the sharp gradients.
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NOMENCLATURE
a (as sonic speed
ay Sonic speed at SA and reference pressure.
Cp, Cv Specific heats at constant pressure and constant volume.
Ce Friction facior.
d Duct diameter.
e Specific internal energy
f Friction force per unit fluid volume
i (11} Spatial grid points
n,(n+1) Time level steps.-
p (as pressure
q Heat transfer per unit fluid volume
R (Gas constant
S Specific entropy
S Stanton number
t Time
T. Wall temperature
u Gas velocity
X Space coordinate
¥ Specific heat ratio
P Gas density
a Non-dimensional entropy,(exp { 1ol 5} where s = s/R.
AB Reimann variables.
n+i 1
at
n
-1 " Ty M e

ar —

Flow variables to be calculated at grid points B
Flow variables to be inrerpolared at points N.J.M
(Feet of characteristics).

Figure (1) Tlustration of the method of computation for the
modified method of characteristics
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