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Abstract:

Learning and evolution are two fundamental forms of artificial intelligence.
There has been a pgreat interest in combining learning and evolution with
artificial neural networks (ANNs) in recent years. The training problem
for feed forward neural networks is a nonlinear parameter estimation that can
be solved by a variety of optimization techniques. Many researches in the
literature on neural networks has focused on variants of gradient descent. The
training of neural networks using such techniques is known to be a slow
process, with more sophisticated problems not always performing
significantly better.

In this paper a2 new proposed algorithn to learn the neural networks is
introduced. This algorithm implements the effectiveness of the genetic
evolution techniques to adjust the weights values of the feed forward neuraf
networks. Simulation examples of the proposed algorithm produce optimal or

suboptimal solutions in a small computation times.
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1. Introduction:
The evolving interest in Amrificial
Neural Networks (ANNs) in the
scientific community is fueled by many
successful and promising applications.
ANNs can be implemented in tasks of
optimization [1], speech recognition [2],
patten  recognition  [3],  signal
processing [4], function approximation
[5], control problems [6,7}, financial
modeling [8] etc. . Even though ANNs
are capable of performing a wide variety
of tasks, yet in practice sometimes they
deliver only marginal performance.
Inappropriate topology selection and
learning  algorithms are frequently
blamed [9]. There is little reason to
expect that one can find a uniformly best
algorithm for selecting the weights in a
feed forward or feedback (recurrent)
ANNSs. Any elevated performance over
one class of problems is exactly paid for
in performance over another class [10,
11, 12, 13]. To improve the performance
the networks formation can be changed.
Fig.l1 summarizes the architecture
taxonomy of ANNs.
Learning of ANNs is a crucial problem
that gains a lot of researchs in the last
techniques
implemented in this regard. Each has its

decades.  Several are
application areas. The weights values,
the architecture of the network and the
activation functions all are key factors
that the  output
input/output  patterns.  The
shortfalls of these techniques lies in:
Long learning time (a range of hours,
may be days) [25:31], with total error
(up to 15%) [26]. Fig. 2 shows some of
the most frequently used activation
functions which represent the Soma in

determine for

general

In ANNs each weight value affects all
the subsequent outputs. Applying genetic
algorithms (GAs) in mimmizing the
overall error in ANNs faces a great
obstacle that is: how much each weight
shares in the output error. This problem
becomes more complex if the ANNs that
have muiti inputs multi outputs (MI/MO)
Fig. 3.

In this paper we introduce a new
algorithm based on the genetic evolution
to train the feed forward networks. A
fitness function explained in [14] is
implemented here to determine the share
value of each weight in the total error of
all /O patterns, consequently, the
weights values can be adjusted gradually
in the GAs principal "survival for the
fittest" to their optimal values. , the
genetic algorithm is implemented to
optimize the weights values for MI/MO.
The simulation results optimal or
suboptimal  weights  values.  The
computation time is considerably small.

2. Learning Algorithms:

Ability to learn is a fundamental trait of
intelligence. Although what is meant by
leaming is often difficult to describe, a
learning process, in the ANNs can be
viewed as the problem of updating
network architecture and connection
weights so that the network can
efficiently perform a specific task [15].
The address
specific issues e.g. Learning paradigm:
what information is available to the
ANNSs. Learning rules: the rules which
govern the updating of the system,

learning process must

Learning algorithm: refer to the procedure
in which leaming rules are used for
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the biological counterpart neurons.
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Fig.3 Multi layer ANN

how much the network can learn from
examples? and time complexity: how fast
the system can learn.

Capacity, sample complexity, time
complexity forms the leaming theory
[16]. There are three main learning
paradigms:

) Supervised: the network is
provided with a correct answer to every
input pattern. Weights are determined so
that the network can produce answers as
close as possible to the known correct
answers. Reinforcement learning is a
special case of supervised leamning where
the network is provided with critiques on
the correctness of the output, not the
correct answers themselves.

(i)  Unsupervised learning: the
correct answers are not required with
gach input pattern in the tratning data sef.
It explores the underlying structure in the
data, or correlation between pattermns in
the data, and organizes patterns into
categories from these correlations.

(iii) Hybrid learning: combines
supervised learning and unsupervised
learning. Typically, a portion of weights
are determined using supervised leamning,
while the others are obtained from
unsupervised leaming.

3. Genetic algorithm:

The genetic algorithm is a stochastic
optimization  algorithm  that
originally motivated by the mechanisms

was

of natural selection and evolutionary
genetics. Over the last decade, GA has
been extensively used as search and
optimization tools in various problem
domains, including: science, commerce
and engineering. The primary reasons for

ease of use and global perspective. There
are some differences between the GA
and traditional searching algorithms.
They can be summarized as follows
(17,18]:

. The algonthm works with a
population of strings, searching many
peaks in parallel, as opposed to a single
point.

. The GA works directly with
strings of characters representing the
parameter sets, not the parameters
themselves.

. The GA uses probabilistic rules
instead of deterministic rules.

. The GA uses objective function
information instead of denvatives or
other auxiliary knowledge.

GA 15 inherently parallel, because it
simultaneously evaluates many points in
the parameter space (search space). So,
the GA has a reduced chance of
converging to local optimum and would
be more likely to converge to global
optimum. The GA requires only
information conceming the quality of the
solution produced by each parameter set
(objective function values). This differs
from many optimization methods which
require derivative information or, worse
yet, a complete kuoowledge of the
problem structure and parameters. Since
the GA does not require such problem
specific information, it is more flexible
than that most scarch methods [19].
Typically, the GA is characterized by the
following components:

. A genetic representation (or an
encoding) for the feasible solution to the
optimization problem.

o A population of encoded solution.
. A fitness function that evaluates
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their success are their broad applicability,

the optimality of each solution.

) Genetic operators that generate a
new population from the existing
population.

. Control parameters.

The basic flow chart of the GA 1s
illustrated in Fig. 4 where (£> 0 ) a small
number to check convergence.

The design of ANNs using GAs can be
helpful in terms of two main issues. First,
it automates the design of the network
which would otherwise have to be done
by hand using trial and error [20].
Second, the process of the design can be
analogous to a biological process in
which the ANNs blueprints in
chromosomes develop through an
evolutionary process. Designing networks
by hand may be very complex. Even
through a design is found to be sufficient
for a task by trial and error, the risk of
missing more promising architecture is

not eliminated. Given the complex
combination of performance criteria, such
as leaming  speed, compactness,
generalization  ability, and  noise-

resistance, it is very difficult to optimize
a network design. The problem of
designing an ANN for a specific problem
involves searching the space of
architectures for one which will perform
best in meeting the requirements of the
problem. The search space for such a
problem may be infinitely large, un-
differentiable, complex, noisy, deceptive
and multi-modal.

GAs are applied to neural networks in
two different ways: they either employ a
fixed network structure (i.e. the number
of nodes and the connections among them
are fixed) with connection weights under

itself [21:23].

4. The proposed Algorithm:
Given groups of inputs and desired

outputs pais (7, 04); i = 1 to n as
e.g.
r Odl-‘ 042; OdB, ”)pal‘lcm j=[ »

shown in Fig.5
( !1, fa, Is, [

(g by dgie, Ogyi Ogyr Qg - Jparemj=2 5 - -

the minimum number of
neurons weights W, in the hidden layer

Compute

and the optimal values of the weights in
the hidden layer (or layers) and in the
output layer such that the sum of emrors
of the actual outputs @, and the desired
outputs Oy is minimum. Referming to
Fig. 5:

1 denote the row number.

j denotes the vertical number.

g number of input/output patterns.
The error function is:

Frosa = %iimﬁ —y¢ )
J

=1 =1

The sum of absolute errors can be used
correctly although the form in (1) is easy
and frequently used [24].

The learning algorithm is explained in
the following steps:

4.1 Specify the suitable
function to be used.

activation

4.2 Assume the order of weights vector
in the hidden layer = the maximum
order of inputs vectors.

4.3 For the two parents Pl, P2
randomly choose small values for
all weights in the bidden layer and in

the output layert. e. W, % {0.03:0.3%

E. 25
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evolutionary control, or they are used in
designing the structure of the network

the emor &, = Oy — vy,

4.6 Repeat steps 4.4 and 4.5 for all (g)
I/O groups. Compute E,..; in equ. (1).

4.7 Compute the derivatives of E

total

w.r.t. each weight W, by making a small

random perturbation in each weight
individually Wy=W, + AW,

AW, < 0.05[AW,).

4.8 For each increment of a single weight
compute:

EBroug A
5“""

‘lgwui“
aAWij

(2]

Where: &E‘m;ﬁ

errors for all /O groups due to the small
perfurbation in the weight number i, |.

15 the difference in

and the sum of the derivatives of alt
errors w.r.t. Wy is:

=% T SErowly
. i Wy

3)

dtox;ai i

4.9 Compute the fitness function of each
weight:

Srotal it

J (%)

Fimess_,Wﬁ e
total

4.10 Compute the repetition rate of the
weight value

RR’_VVii e Fi{ﬂﬂi‘i_“}'if (5)

Erotal

44 Check if E, . < &

stop.
The weights values are optimal in
this case.

Using the first I/O group,
compute

then

4.5

randomly choose two weight values and
change them to close values.
4.12 Repeat steps from 4.3 up to 4.11 till

the number of iterations > sufficient

number e.g. 100 iteration. If this is true
while E,..; stll > & then increase the

weights in the hidden layer by 1. And go
to 4.3 again.

The algorithm can be summarized as:
READ  the activation function
READ max. sumber of weight per layer
INITIALIZE randomly the values of the
weights
REPEAT 1l the minimum total error
{of all I/O patterns) <eg.

INITIALIZE number of weights = number
Of inputs (in one I/O pattern)

#ill number of iterations > max
number of iterations

DO

Total Error = outputs for all /O
patterns - Actual outputs for all
I/O patterns

RUN The Genetic Algorithm to minimize

the total error

END Do.
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Keep the weights values of the heist
repletion rates in the next two children.
And perform the mutation process to
yield the values of the new solution.

4.11 Check if the algorithm fell in local
minima. If true, apply the cross over
operation. This can be done simply by

If the minimum Total error (of

all I/O patterns) < ¢ then stop
ELSE

increment the number of weights

in the hidden layer by one.

End.

Genetic Algorithm:

INITIALIZE randomly the values of the
weights P1 (first parent)
INITIALIZE randomly the values of the

weights P2 (second parent)

REPEAT: for all I/O patterns compute the

outputs of the network.

Generate inifial.populatiin

+

Decode chremosomes

3

Find eost for cach cromosome

1

Select Mates

¥

Mutation

Check

Daoneg

Convergence ey’

Fig. 4 The Genetic Algorithm
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using weight values of P1 and their The desired outputs are 3, 5, 7
total error.
the output of the network using

i i Results:
weight values of P2 and their total

Error. Outputs are: 2.81236, 5.08259, 6.99616
END FOR Minimum Error is:  0.0210229
Computation Time is 275.859 Second.
FOR Pl and P2 The Weighits values are listed in table 2.

compute the partial derivative of the
total error w.r.t, each weight the Fitness
Function of each weight the repetition
rate of each weight

The pumber of summing points is 7.

Its clear that increasing the number of
a weight for one hidden layer improve

END FOR the results and consumes more
computation  time compared fo
PERFORM Crossover increasing the hidden layers.

PERFORM Mutation

COMPUTE the new values of weighis of
Pl and P2. 0.153966 | 0.10155 0.0980102
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pick up the minimum error
number of iterations > Max
number of iterations
END REPEAT.

UNTIL

5. Simulation Results:
Example 1;

[nputs are: 2, 3, 4.

Desired Qutputs 3, 4, 7.

Number of hidden layers is 2

Results:

The outputs are: 2.88517, 4.77561, and
6.71453.

Fotal error is  0.0725144

The weights Wij are as shown in table 1.

Computation time is: 33.42 second.

I'he number of summing points is 3.

Example 2:
Using one hidden layer only and
increasing the number of summing

functions to 7 we get for the same inputs

of example 1.
0.0834681 0.191778
0.5 0.474532
0.402326 0.324808
0.192679 0.265023
0.38435 0.255257
0.344035 0.394284
0.264229 0.5
0.5 0.0108951
0.29313 0.206
0.459258 0.5
0.416501 0.5
0.217887 0.231239
0.289575 0.109851
0.5 0.5
0.5 0319697

0.478072

0.233177

0.486587

0.317316

0.360698

0.44879

0.304941

0.299799

0.158254

0.389142

0.383007

0.423612

0.23983

0.213095

0.0692618

0.297571

0.363399

0.448759

0.153401

0.091586

0.0676138

0.176778

0.260765

0.454833

Table ] Weights of Example 1

0.448592 0.35551
0.439436 0.297891
0.345286 0.239921
0.465682 0.5
0.117038 0.5
0.358257 0.0628986
0.5 0.499847

Example 3:

In this example 2 input / output patterns

are tested.

Inpuis:

First input vector is : 2, 3, 4.

Second input vectoris: 5, 2, 1

Desired Outputs are: 3, 4, 7 and 8, 10, 7

E. 29
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0452818 0.135945
0.31048 0.197989
0.309107 0.301569
0.15862 0.5
0.117298 0.145146
0.493622 0.272027
3.5 $.0659505
0.421293 0.0125431
0.46556 0.461943
0.086108 0.325495
0.0782189 0.425703
0.237281 0.174505
0.349223 0.333079
0.0870693 0.213004
0.361141 0.182348
0.5 0.492615
0.00158696 0.374477
0.111057 0.409833
0.5 0.376965
0.0897549 0.2903506

Table 2 Weights of Example

Minimum Error is 4. Computation time is
162.5 Second

It must be pointed out here that the
signum function is used in this example
to fit the binary output characteristics.

In  such problems the internal
computation is the same as before, when
the output is less than specific value it's
rounded to zero.

The results are good 4 bits error out of
130 bits (5 x 26). This small amount of
error can be tolerated in data recognition.

Conclusions:

The proposed evolutionary training
approach is attractive because it can
handie the global search problem better in

respectively.

Actual outputs are: 4.0291, 4.7769,
2.93937 And 8.46083, 10.4153,
6.27991

Total Error is 11.7141 number of
Computation time 1s 275 seconds.

It is clear that the error is increased with
the increase of [/O number of patterns

Example 4:

Two tnput / output patterns are:
Inputs:

First pattern 1s: 2,3,4

Second pattern is: 5.2.1

Desired QOutputs are: 3.5.7 and 9.11.4
respectively.

Using | hidden layer and 14 summing
points:

Actual outputs are: 5.47272, 4.92106,
5.3143 9.48123, 10.1723, 4.9214
Computation time i Time is 373.734
Second

Total Error is 5.36388,

The increment of number of weights in
one hidden layer is capable to reduce the
total error even with the increase of
number of patterns.

Example 5:

The algoritbm is wused for
compression of the 26 English letters.
The inputs are 5 x 7 matrix array that are
restricted to either 0 or 1.The output is

5 x 1 matrix array Fig. 6.

Using a 14 summing point hidden layer
we get:

a vast, complex, multimodal and non

data



Mansoura Engineering Journal, (MEJ), Vol. 35, No. 1, March 2010 E.31

differential manner. It does not depend on
gradient information of the error, and
thus it is appealing when this information
is unavailable or very costly to obtain.
The most significant advantages of this
technique is that: -

- Computation time to learn the weights
is significantly reduced (in a matter of
seconds) compared to the conventional
techniques.

- The weights number is minimized since
the algorithm starts by the minimum
number (equal to number of inputs) and
increment it if the check for minimum
etror fails

—The error range is comparatively small.
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