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Automatic Analysis and Classification of Surface EMG
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Abstract- In this paper, parametric modelirg of surface EMG algorithms that
facilitates automatic SEMG feature extraction and Artificial Neural Networks (ANN) are
combined for providing an integrated system for the diagnosis of myopathic disorders.
Three paradigms of ANN were investigated: multilayer backpropagation algorithm, self-
organizing feature map algorithm and a probabilistic neural network model. The
performance of the three classifiers was compared with that of the old Fisber linear
discriminant (FLD) classifiers. The results have shown that the three ANN models give
higher performance. The percentage of correct classification reaches 90%. Poorer
diagnostic performance was obtained from the FLD classifier. The system presented here
indicates that surface EMG, wben properly processed, can replace needle EMG in some
clinical applications and can be used to provide the physician with a diagnostic assist
device.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) is the study of the electrical activity of muscle, and forms
a valuable aid in the diagnosis of neuromuscular disorders, EMG findings are used to detect
and describe different disease processes affecting the motor unit, the smallest functional unit of
the muscle. With voluntary muscle econtraction, the action potential reflecting the electnical
activity of a single anatomical motor unit recorded. It is the compound motor unit action
potential (MUAP) of those muscle fibers within the recording range of the needle or surface
elecrrodes {1).

The MUAP waveform depends on the motor unit architecture, i.e., on the number of
fibers, their sizes, and density, so the analysis of MUAP shape may prowvide important
information about the motor unit structure and its changes. The disease processes which affect
the structure and activity of the motor unit are reflected in the changes of MUAP features
(particularty those of the durations and amplitudes). These changes may also manifest
themselves as polyphasic potentials [2] characterized by an increased number of phases and/or

Accepled June (3, 1999



E. 48 A. El-Nashar, F. E. Z. Abou-Chadi, and M. Saad

terns, Lc., insignals of a more complicated shapc than the normal MUAP. The changes of the
MUAP shapc are an important indicator of MU disintcgration and compensalory processes 31

Recently, several authors successfully investigated muscle propertics by analyzing the
time course of amplitude parameters, muscle fiber conduction velocity, and speetral paramelers
of the EMG signal during voluntary and electrically clicited isometric contractions (4, 5].

It 1s also well known and documented that the power spectral density function of the
EMG signal undergocs frequency compression during cither voluntary or clectrically elicited
sustamed contractions |6], long beforc the muscle becomes unable to produce the desired force.
Such changes arc referred to as myocleetric manifestations of localized muscle fatiguc.

The spectral content of the EMG signal depends on (a) the number of active motor
units whosc clectrical activity is sensed by the detection probe, (b) their Gring rates, (¢) the
position of the active muscle fibers relative to the detection probe, and (d) the velocity of
propagation of depolarization along muscie fibers [7]. During a sustained muscle contraction,
the spectral compression is mainly duc o a progressive reduction of muscle fiber conduction
veloeily and 1o the variation of the spatial distribution of depolarization along the muscle fibers
|8]. Thercfore, if spectral parameters are studied, it is important to scparate their random
variauons duc to cstimation crrors from those due to physiological events.

Previous approaches for analyzing the time-varying aspects of the EMG signals have
uscd a lincar prediction model. Among thern, the autoregressive (AR) model has been used to
deal with time-varying EMG signals becausc it cmphasizes spectral peaks for time records
having a small number of samples |9]. This approach was introduced by Graupe and Cline
[10]) who attcmpied to use the surface EMG signal for controlling prostheses. Subsequently,
Shertf et al [11] studied the behavior of autorcgressive integrated moving average (ARIMA)
cocfficicnts of the EMG signal from the deltoid muscle during dynamic contractions. Capponi
ct al. [12] rcpresented EMG signals, detected from the biceps and triceps mus.yics, with the
time courscs of AR cocfficients during rapid isometric contractions. Reeently, Kiryu ct al. [13]
investigated the physiologicai interpretation of AR modeling. They analyzed the time-varying
behavior of AR paramcters of well-conditioned EMG signals detected during an isomglric
forcc-varying ramp contraction. The AR coefficients of the EMG signal could be used as
quantitative measures to monitor local muscle fatigue [14, 15].

To further the devclopment of quantitative EMG techniques, the nced has emerged for
adding automated decision making support to these techniques so that all data is proccssed in
an mtegrated cnvironment. Towards this goal, Coatricux ct al. {16] applicd cluster analysis for
the automatic diapgnosis of pathology based on MUAP records. Hassoun ct al. [17] proposed an
automated clectromyogram signal decomposition using neural networks. Pattichis et al. [18]
vulized anificial  necural networks for the automatic classification of EMG featurces recorded
using needle electrodes Tor normal individuals and paticnts suffering with ncuromuscular
discascs. They uscd scven features derived from the shape of the MUAP waveforms.

The main goal of the present work is threefold: to assurc the usage of surface
clectromyopraphy (SEMG) in clinical diagnosis, to characlerize the SEMG  signal through the
dutermination of the autorcgressive model paramcters to be used for comparisons between
groups of paticnts or between an individual record and any population norms that might
become avarlable, and to provide an efficient classification for the different pathological cases.

The classification approaches taken herc are: the old Fisher lincar diseriminant
algontbin and  three models of neural nelworks: multilayer  back-propagition model, self-
orpanizing feature map model and a probabilistic ncural nctwork modcel. A comparison of the
performance  of the four classificrs is performed for normal individuals and paticnts suffering
with myopathic lcsions .

II. METHOD
Twenty cight subjects werc used this work: 14 normals and 14 suffering from
myopathy. SEMG signal was recorded from the deltoid muscle at 50% Maximum Voluntary
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Contraction (MVC) for five seconds using bipolar surface electrodes. The recording points
within the muscle arc standardized. The Biopac data acquisition system which consists of
internal microproccssor MP100 data acquisition card with sixtcen-analog input channcls and
connceied Lo an Apple PC was utilized. The softwarc used in data acquisition is the
Acgknowledge Ver2 softwarc. Simple surface EMG electrodes were used and EMGL00
biomedical diffcrential amplificr was used. This system is available at the Medical Electronics
Lab., Facully of Enginecring, Mansoura university.

The Sampling Frequency

1t has been shown that information cxists in the EMG frequency spectrum up to frequencies
of | kHz, implying that in order to satisfy thc Nyquist eritcrion, a sampling frequency of at
Jeast 2 kHz would have to be used. However, for surface myqclectric signals, most of the
power in the signal is at low frequencics (below 300 Hz).

Further,  consideration of  average P Avesago Autbcomelaton Function
autocorrclation  functions of the EMG n '
rccorded  from  two  subjects onc for  an \

myopathic subjcct and the other for normal L 1
subject from a pair of surface electrodes a0 ll .
placed over motor umit of the deltoid L i
muscle, indicatcs that the differcnce o -
between  these  functions  is more ?} a

pronounced at low frequencies. Fig. 1. o ﬁ){\ ,z"'“\ =
llustratcs  the  average  autocorrelation foan / / . \;g\ T
funcuons of the two records. It can be scen i el \i,. e
that there is a significant correlation up to 2h o
the second time lag. This time interval @U: i s f
corresponds to a frequency valuc of about 0 szﬂ>q.1f- G J
5000z, Therefore, it is argued to choose a eis b RtlulAR - LSS
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sampling frequency 1 kHz for diagnosis ) )

pUrpOSCS. Fig. 1. Typical average nulocc_:rrcluuon functions of
the EMG signal recorded during 50 % MVC for
nermal subject (—) and myopathic subject (***).
The time intervel between lags is Lms.

III. AR MODELING OF SEMG

In AR model cach samplc emg(n) of SEMG is described as a linear combination of previous
sanples plus an error term e(r) thatss independent of past samples, that is

v
emg(n):—Za, cemg(n—k)+e(n) (n
k=1
Wlere engin} is the output model signal, a, arc the AR cocflicicnts, efh) is the crror
scquence and p is the model order. The model represented by (1) can be used in a backward
fashuon (retrospective regression analysis); the signal at time # is considered as being the lincar
combination of g future valucs. The system function is
H(z) = _l— (2)
1+Ya, -z
k=)
H(z)contains poles only. Thus, the model can work only for signals with well defined peaky
speetrum  like speech and EEG, and can be fitted also to SEMG. The speetrum of the sequence
emg(n) can be cstimated from the model if we consider |[E(w)] =1 {whitc noisc scquence),
therefore, the spectrum of output signal equal the spectrum of H(z) and can be cstimated by

substituting Z-3cJ® as follows
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1 {3)

S(@) =|EMG(@)|" = -
[+ fa, i
k=l

The AR cocfficients (@) arc calculated using the covariance method {19] which minirmizes
the residual energy Znez(n).

Spectrum of Surface EMG

The analysis was carried out on consecutive 300 ms segments of EMG signal to ensure the
stationarity of the scgment where SEMG  was found to be stationary on segment length less
than O 64s |8). Fig.2(a) demonstrates the spectrum of such scgment calculaled by FFT (fast
Fouricr transform) routinc. A consistent feature of EMG spectra is the many spectral peaks in
the region 10-200Hz. The higher frequency regions, above 200Hz, contains minor amplitude
information compared to the lower frequency region. Fig.2(b) demenstraies the spectrum of
thc AR model of the same signal calculated using 20 coefficicnts. It can be seen here that
instcad of oblaning six dominant pcaks only three are obtained.
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Vig.2. (a) Spectrum of Surfoee EMG segment Caleulaled by FFT. (b) AR modcl spectrum [or the same sepment
with 20 coeflicients calculated by covariance method.

The above model, instead of resolving nearby dominant frequencies, resolves frequencics in
the lngh-frequency reglon that are minor to the dominant ones in the low region.

Fig 3. is an attempt to resolve the problem of dominant frequencies by increasing the modcl
order where the low frequency peak is still not pronounced. The model also lends to resolve the
minor frequencics. It became apparent that most of the spectral componcnts tic below 200 Hz
as can be seen in Fig.2{a) and Fig. 3. This came in addition o poor spectral envelope matching
which resulted from the inclusion of a higher-frequency band. It was decided, therefore, to
disregard frequency components above 200 Hz and to reduce the bandwidth of the signal to
one-half. The signals were lltered at 230 Hz and resampled at 500 Hz.

Fig.a(a) demonstrates the FITspectrum of the fillered signal at 230 Nz, Fig. 4(b) tllustrales
the speetrum of the all-pole 20 cocfTicicnts model with the EMG scgment. It can be scen how
most of the dominant frequencics are resolved and a much better spectral envelope fit is
obiained. Therefore, a value of p = 20 was chosen to characterize surface EMG segments as a
compromisc bctween model size and accuracy of signal representation. After characterizing
cach segment with 20 cocfficients, it was observed that after calculating the spectra of
consccutive scgments, the signal had a changing spectrum. The number of scgments
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characterizing each record was calculated ore AR Mada dpotinum
as follows. The averape of cach coefficicnt ware
was calculated as a function of segment sl

number and its convergenee was obscrved.

It was scen that after ten segments the
cocfficients started to converge. Therefore,
ten scgments cach 500 ms long were
cliosen Lo characterize the signal, vond
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Fig. 4 (a) The FIT spectrum of the EMG signal sampled at S00Hz (b) The AR model spectrum of the sarme
EMG  segment wilh 20 cocfficients caleulated using the covanance method.

IV. EMG CLASSIFICATION

The classification approaches taken here arc: the old Fisher lincar discriminant [20]
and  arificial ncural network algorithms. Two paradigms for training the ANN were
vestgated, supervised and unsupervised. For supcrvised leaming, the well-known back
propagation algorithm [21, 22] and for unsupervised lgaming, the sclf-organizing fature maps
algorithuns [23, 24] were implemented. A comparisen of the performance of the different
classificrs is performed for normal and abnormal individuals.

A Using Fisher Linear Discriminant Algorithm
The lerst slep in the diagnosis procedure is the construction of the Fisher lincar discriminant
veelor W where the lwo different elasses arc introduced as in the following cquation 24|

-1

W=Cr (- 1) (4)
where a1, t1p  are the means of the two classes 3y, 3,, and G, is the total within-ciass
covariance matrix defined by
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Cr= T = ) (Xn =) + T (K= 1) (X = p12)"
ned, ned,

Afler calculating the vector W, the projection of cvery subject that participate in the
construction of the vector is first calculated and then the projection threshold between the two
diffcremt classcs is determined. After calculating this threshold, the projection of unknown
subjects 15 founded and classified in accordance with the above threshold.

It has been found that the results arc dependent on the number of participants in the
construction of the Fisher lincar discriminant vector FLDV. Morc participants mean better
definition of the threshold between classes, and thus better ¢lassification. Using nine nortnals
and mne abnormals to comstruct of the FLDV, a 60% pereent successful classification was
obtawned for a test a group of five normals and five abnormals.

B. Using Back-Propagation Neural Network

The number of input nodcs is 200 using the 20 AR cocfficients for 10 SEMG scgments,
and the number of output is onc output node, where the output is correspending to the two
claszes, Normal and Abnormal., The rumber of nodes in the hidden laycrs is changed (3 - 10
nodes) in order io determine the optimum number of nodes. A scaling method is uscd to scale
the input patterns to give every pattcrn the same importance,

The results of classification using the back-propagation neural network trained with three
different backpropagation algorithms are summarized in Tables 1-3. ANN architcctures with
three layers (input layer, hidden layer, and output layer with one output node) were used [21,
22|, The ANN architectures arc expressed as  strings showing the number of inputs, the
number of nodes in the hidden layers, and the number of nodes in the output layer. The number
of weights, and the traming time arc tabulated for all models. During the training phasc, an
crror measurc of the closeness of weights to a solution can be calculated for each pattern that
represents a subject in the tratning sct. This measure is used for determining whether a certain
subject has been [carned by the system, and is defined by

M
PSS:Z(y, _df)2 (5)
=1
where PSS! Pattern sum squares.

M: Number of output nodes (onc in this case)
¥t Caleulated output.

dj : Desired output.

The PSS measurc is then summed over all patterns to get the total sum of squarcs or TSS
measure

o 2
755 =33 (v, - d,) m=lop ()

m=l =1
where p is the number of training patterms (18 in this casc; 9 normals and 9 abnormals).

The average crror estimated for the output node

EE = (TS5 1 p)* )

for comparing e resuits that were obtained by various classification algorithm, common
performance metrics have been used {19]. For a given decision sugpested by the output ncuron,
four possiblc altcrnatives cxist: truc positive (TP), falsc positive (FP), truc negative {TN), and
falsc ncgative (FN). TP decision occurs when the positive diagnosis of the algorithm coincides
with a  posiuve diagnosis according to the physician. An FP decision decision occurs when the
algorithm  made a positive diagnosis that does not coincide the physician. A TN decision
occurs when the algorithm and the physician suggest the abscnce of a positive diagnosis. An
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FN decision occurs when the algorithm made a negative diagnosis that does not agree with
the physician. From the above measures, correct classification percentage (%CC) has been
calculated for the N cases in the evaluation sct:

%CC = 100 x (TP + TNY/N

@)

Important issucs that characterize the overall performance of thc back-propagation
algorithms during the training procedure arc:
13 The output of all the backpropagation EMG madcls is limited between onc and zcro range,
so the sclection of sigmoidal activation function is preforred. The hidden layer nodes activation
functions werc also sct to sigmoidal function.

Table L. The results of EMG classification using Neural Network Back-

Propagation trained with Varable Leamning rate

i it g e i
b b plad o b Rt
Sl i
e
1 323 10°
2 | -200s-8 | I008 |38 LS 60 100% - 80%
3 200-10-1 2010 | 285 |yp5| 60 100% 80%
Table 2. The results of EMG classification using Neural Network Back-
Propagation trained with Varable Learning rate (early stopping technique)
Modet | Architecture | Weights | Epochs EE Time Training | Validation
el | (Seconds) | - %CC %CC
1 200-3-1 603 188 1} 0.0047 30 90% 90%
2 200-3-f. | = 1005 18 foos3d| i - 90% 0%
3 200-10-1 2000 | 148 |00067| 45 | 100% 90%

Table 3. Neural Network Back Propagation EMG Modcls Trained Using Conjugate Gradicnt
Mecthod with Early Stopping Technique to Improve Generalization.

Model | Architecture | Weights | Tralnipg | Validution
B R R s . T et
L Nce L e
1 200-3-1 603 100% 804
2 200-5-1 SO100% 100% -90%

3 ZU(J-IOLI 2010 = 100%, 90%
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2) At prescnt, no method other than empirical has becn propesed for choosing the architecture
of feedforward NN so that for every training algorithm three architcctures were crcated and
comparcd.

3) Training all the NN models is accomplished using batch training.

4) Networks of Table | arc trained using a variablc learning rate algonithm. The first model
architccture is insufficicnt to gencralize the network where Training % CC = 100 but
Fvaluation %CC = 70. Model 2 and 3 arc nearly suitable for generalization of network. 1f we
attempl 10 move towards high archilccture network we will over fit the data and the nctwork
will be less generalized. The value of TSS will detcrmine the generalization performance of
network, hugh £F value will lead to high Training %CC but less generalization where the
network  tend to memorize the training data, small ££ valuc will lcad to best gencralization but
may be less Training %CC.

5) All Modcls of Table 2 are trained using variable lcarning rate algorithm with early stopping
technique to determing the optimum valuc of EE. The available records are subdivided into
throe sels: tramng set, and validation sct. The problem of detcrmining the suitable nctwork
architecture is removed using this tochnique. The number of epochs is reduced using carly
slopping tcchmque wherc the training will continue until validation test failure. In training the
nctworks there is no sufficicnt records to form an cvaluation data sct but with the first two scts
the basic idea of carly stopping technique is clarified.

6) Table 3 is a backpropagation modcls trained with Conjugate Gradient Algorithm. The
Conjugate Gradient Training is mor¢ fast than old variable lcarning ratc algorithm and is
rclatively suitable 10 large size networks than other fast algorithms. Therefore, it was found
that it gives the highest performance for the present application.

C- Using Self-Orpanizing Feature Map

The ncural network models in this system were denved using the Kohenen's self-organizing
feature maps algorithm [25]. With this algorithm the training process involves the presentation
of pallern veclors {rom the training scl onc al a time. A wining ncuron (node) is sclected ina
systematic way after all input vectors are presented. A weight adjustment process takes place
by using ncighborhood concept that shrinks over time and leaming cocfficient that also
decreascs with time. After scveral input wvectors arc presented, weights will form clusters or
veelor centers that sample the input spacc such that the point density function of the vector
centers tends to approximate the probability density function of the input vectors {23]. The
weights will also be organized such that topologically close output nodes are sensitive to inputs
that arc physically simifar. Thus, the output nodes will be ordered in a natural way.

The results of the scll-organizing featurc map models that were investigated with no
preprocessing of the 200 input feature  vector are summarized in Table 4. Models with output
gnd sizc 4«4, 0Ox6, 8x8, and 10x]0 werc developed. Initial gain factor 77 was sclected to
cqual 0.9. Trawning for sclf-organizing fecature map EMG models was carricd out for 1000
cpochs.

Table. 4 Self-Organizing Feature Map EMG Models

R e e S e
! 200 2 4x§4$ T 75 oo 944% | 60%
2 200 2 Gx6 140 100% BO%
3 200 2 S<8 09| 1000 | 270 | 100% 80%
4 200 2 10x10 [ 0.9 1000 |7 440 | 100% |  80%
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At each training cycle (epoch), the 18 input patterns were presented at random. It was
obscrved that grid sizes below 6x6 werc inadequate for producing models with well-scparated
classcs. All models succeed to classify ail paltemns during training phasc cxcept model 1.

The proccdure that was foliowed for assigning normal and abnormal classes to the sclf-
organizing featurc maps is presented here.

For every 200 element feature vector

X, "_-[xl,n!xl,nl“.!x?,m.n]r a=112, - N %)
where N is the number of pattems in the training sct (N=18 pattcrns}, there 1s an output node
at the grid for which maximum response R is eaused. This node is assigned the class

MR
numbcr of the vector(] =» normal, 0 & abnormal).
Fig. 5(a) shows thc nodcs where maximum responsc was caused by the subjects (pattems}
in the training sct after the compiction of the training phase.

0 | 0 ] { | 0 | ] | 0 |
0 X 0 | X 0 0 0 0 | 0 0
X 1 X X X x [ 1 0 1 0 0
1 X 0 1 X 1 1 0 0 i I 1
x 0 X X 0 X 0 0 0 1 0 1
X X X 1 X X 0 0 1 1 1 1

Fig.5 Sell-Organizing feature maps. (a) Maximum response map after training phase (100%)
(b) Maximum Response with all nodes assigned.

Nodes with "x" valucs have not becn assigned to any class. For this modcl wherc the
cutput grid is 6x6 (36 output nodcs) with a training set of 18 patterns, at least 18 nodes will
not bc assigned to any pattern, This means that unknown patterns falling on "x" nodes will not
be diagnoscd.,

During the next phase, the "x" nodes arc assighed to onc of the classcs as follows: the data
of cach subjcct in the training sct is applied at the input, and the responsc at a certain "x" node
is obscrved. The class of the subject that cause maximum response at the node is assigned to
the node. This procedure is applied for all the "x" nodes until all of them arc assigned to a class
as shown in the figure 5(b). Fig.6(a) shows the two classcs boundarics for all the nodes in the
prid. Fig. 6{b) shows thc grid aftcr evaluation phase using the test group: five normal and five
abnormal subjccts which yicld 80% correction classification (%CC).

The sclf-organizing featurc maps system compared to the back propagation ncural nctwork
system has the advantage of the results being presented pictorially. For cxample, with this
system on¢ can rclalc a certain paticnt with another patient, find boundary cases, and obscrve
thc mapping of a patient over serial examinations. Training effort for self-organizing featurce
map models was significantly reduced as compared to the back propagation modgls.

{2 (b)
Iig 6 Scll-Organizing lcature maps. (u} Simphiicd map showing the two classes  boundaries
(b) Muximum response map for the evaluation set (¥%CC = 80).
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D- Using Probabifistic Neural Network

The Probabilistic Neural Network (PNN) is a Baysian classificr put into a neural network
architecture |26, 27]. It can be used as a function approximator like the back propagation NN.

The Probabilistic Neural Network should be used only for classification problems where
there is a representative training set. It can be trained quickly but has slow recail and is
memory intensive. 1t has solid underlying theory and can produce confidence intervals. This
network is simply a Baysian Classificr put into a neural network architecture. The PNN
depends on cstimation of probability density function for every class using the Gaussian
weighting function:

1 _l"'"ll
g)==%e * (10)
=

where 4 is the number of cases in class, x; is a specific case in a class, x is the input patiern

1o be classificd, and o 15 the width parameter

This formula simply cstimates the probabilily density function (PDF) as an average of
separate multivariate normal distributions. This function is used to calculate the prabability
density function for each class.

The suggested probabilistic neural network eonsists of three layers. When an input is
presented, the first layer computes distances from the input vector to the training input vectors,
and produces a vector whose clements indicate how close the input is to a training input. The
sccond layer sums thesc contributions for each class of inputs to producc as its nct output a
veclor of probabilities. Finally, a compete transfer function on the output of the second layer
picks thc maximum of these probabilities, and produces a onc for that class and a zero for the
other classcs.

Training the probabilistic neural network with no preprocessing 18 training pattems with
diffcrent sigma (spread) and ten evaluation pattems sct is shown in Table 5.

The effect of the sigma (spread cocfficicnt) on the performance of PNN is sounded in the
above table where other feature work may be looking for a training algorithm which train the
spread cocfficient to the optimum value like the weights of the networks.

Table 5. Results of using the probabilistic neural network classifier

Spreadie) | 01 | 685 Ea -
wee " o 0% E?ﬁ%g 90% | 0% | 70%

i

V. DISCUSSION AND CONCLUSION

An attempt to characterize surface EMG for clinical clagsification was made. It has becn
demonstrated, that cnough information remains in the recorded surface EMG to allow its usage
wn clinical classification. Surfacc EMG was found to have a changing speetra nature with a
considerable variance. To overcome the variability nature, a number of segments were choscn
to describe one subject. The AR method was selected to characterize the signal since it reduces
the dimensionality of speetral characterization. The covariance method was utilized for the
paramcters cstimation process duc to its less biased estimation than the autocorrelation method.

Artficial Neural network (ANN) diagnosis madels in conjunction with parametric analysis
provide an integrated sololion to the prablem of automated EMG cvaluation. This approach is
very desirable becausc it minimizes obscrver bias, facilitates comparisons of results across
individual and differcnt methodologics, and morc importantly, provides uscful information for
helping  the physician in reaching a more accurate diagnosis using surface clectrodes instcad of
ncedle  clectrodes.  The SEMG’s uscd were rccorded from normal individuals and
ncuromuscular disorders (myopathy).
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Three paradigms of ANN were investigated: multilayer backpropagation algorithm, self-
organizing featurc map algorithm and a probabilistic ncural nctwork model. The performance
of the three classificrs was compared willh that of the old Fisher tincar discriminant (FL.D)
classificrs. The results have shown (hat the three ANN models give higher performance. Poorer
diagnostic performance was obtained from the FLD classifier. The percentage of corrcct
classification rcaches 90% using the backpropagation multilayer algorithm,

The system prescnted here indicates that surface EMG, when properly processed, can
replace needle EMG in somc clinical applications and ¢an be used to provide the physician with
a diagnostic assist devicc. The amount of data collected until now is insufficicnt for making
significant conclusions conccming the accuracy of classification. Yet it is suggesicd that the
methods adopted have the potential of becoming an effective diagnostie device. This is only the
first stagc of a project aiming at building an expert systcm for SEMG. Adding new cascs and
ncw types of discases seems to be next and necessary steps.
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