MANSOURA JOURNAL OF Mathematics

Official Journal of Faculty of Science, Mansoura University, Egypt
E-mail: scimag@mans.edu.eg
ISSN: 2974-4946

On the classification of periodic points of cubic polynomials over Q

A.Hashem, M.Sadek, and E.Ahmed
Department of Mathematics - Faculty of Science, Mansoura University - Egypt

Abstract

In this paper, we introduce a complete parametrisation of cubic polynomials over Q that have a rational periodic point of period 1 and rational periodic points of period 2. Moreover, Some parametrisation of preperiodic points.

keywords: discrete dynamical systems; fixed point; projective space; height functions

1.Introduction

A (discrete) dynamical system consists of a set A and a function $g: A \rightarrow A$ which maps the set A to itself. This self-mapping authorizes iteration

$$
g^{m}=\underbrace{g \circ g \circ \ldots \circ g}_{\text {mtimes }}=m^{\text {th }} \text { iterateof } g .
$$

(By convention, g^{0} indicates the identity map on A). For a given point $p \in A$, the orbit of p is the set

$$
\mathcal{O}_{g}(p)=\mathcal{O}(p)=\left\{g^{m}(p): m \geq 0\right\}
$$

The point p is said to be periodic point of g if $g^{m}(p)=p$ for some $m \geq 1$. The smallest such m is called the exact period of p. And it is called preperiodic point if some iterate $g^{n}(p)$ is periodic. The sets of periodic and preperiodic points of g in A are respectively denoted by

$$
\begin{gathered}
\operatorname{Per}(g, A)=\left\{p \in A: g^{m}(p)=p, m \geq 1\right\} \\
\operatorname{PrePer}(g, A)=\left\{p \in A: g^{n+m}(p)=g^{n}(p)\right. \\
, n \geq 1, m \geq 1\} \\
=\left\{p \in A: \mathcal{O}_{g}(p) \text { isfinite }\right\}
\end{gathered}
$$

When the set A is fixed, we write $\operatorname{Per}(g)$ and $\operatorname{PrePer}(g)$ instead of $\operatorname{Per}(g, A)$ and $\operatorname{PrePer}(g, A)$ respectively.

Let a morphism $g: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ of degree at least two defined over a number field F . For $P \in \mathbb{P}^{n}(\mathrm{~F})$, Northcott used height functions to prove that $\operatorname{PrePer}(g, \mathrm{~F})$ is always finite. Moreover, the latter set can be computed effectively for a given g. These facts have been
rediscovered (in varying degrees of generality) by many authors [1], [2], [3].

The following conjecture has been proposed by Morton and Silverman [4].

Conjecture 1 There exists a bound $B=$ $B(D, n, d)$ such that if F / \mathbb{Q} is a number field of degree D, and a morphism $g: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ of degree $d \geq 2$ defined over F, then $O(\operatorname{PrePer}(g, \mathrm{~F})) \leq B$.

The special case $D=1, n=1, d=4$ of the latter conjecture implies the "strong uniform boundedness conjecture" on elliptic curves, [5]. This holds since torsion points of elliptic curves are exactly the preperiodic points of the multiplication-by-2 map, and their x coordinates are preperiodic points for the degree 4 rational map that gives $x(2 P)$ in terms of $x(P)$. For the case of quadratic polynomials over the rational field \mathbb{Q}, the following conjecture has been made [6]:

Conjecture 2. If $N \geq 4$, then there is no quadratic polynomial $g(y) \in \mathbb{Q}[y]$ that has a rational point of exact period N.

Conjecture 2 has been verified for $N=4$ and $N=5$ (see [10] and [6], respectively). In addition, when $N=6$, the conjecture holds true under the condition that Birch-SwinnertonDyer holds, [14].

2 Rational Periodic Points

Two polynomials $g(y), f(y) \in \mathbb{Q}[y]$, they are said to be linearly conjugate over the
rational field \mathbb{Q} if there is a linear polynomial $\ell(y)$ such that $f(y)=\ell\left(g\left(\ell^{-1}(y)\right)\right)$. This maps the rational preperiodic points of $g(y)$ bijectively to the rational preperiodic points of $f(y)$. Given a polynomial $g(y)=a_{3} y^{3}+$ $a_{2} y^{2}+a_{1} y+a_{0} \in \mathbb{Q}[y]$ with $a_{3} \neq 0, g(y)$ is linearly conjugate to a polynomial of the form $g(y)=a y^{3}+b y+d, \quad a, b$, andd $\in \mathbb{Q}$. We begin by classifying the polynomials $g(y)=$ $a y^{3}+b y+d$ with periodic points of period 1 , i.e., fixed points. If $\lambda \in \mathbb{Q}$ is such that $g(\lambda)=$ λ, then one can write

$$
g(y)-y=(y-\lambda)\left(a y^{2}+u y+v\right)
$$

Thus,

$$
-\lambda a+u=0,-\lambda u+v=b-1,-\lambda v=d
$$

Setting $U=-\lambda u, V=-\lambda v$, one then obtains the following result.

Theorem 2.1 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has a rational periodic point of period 1 (i.e., a rational fixed point) if and only if $a=-U / \lambda^{2}, \quad b=U-$ $(V / \lambda)+1$, and $d=V$ for some λ, U and $V \in \mathbb{Q}$. In this case, λ is a rational fixed point of $g(y)$.

Moreover, If V is given by $V=\left(\lambda^{2} U^{2}-\right.$ $\left.W^{2}\right) /(4 \lambda U)$, then we have another two points y_{1} and y_{2} with period 1 which are given by $y_{1}=(-\lambda U+W) /(2 U)$, and $_{2}=(-\lambda U+$ $W) /(2 U)$ for some $\lambda, U, W \in \mathbb{Q}$. In this case the three point will be distinct if and only if $W \neq \pm 3 \lambda U$ or $W \neq 0$.

Theorem 2.2 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has a rational periodic point of exact period two if and only if

$$
\begin{aligned}
& a=-\frac{u_{3}^{2}}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}} \\
& b=-\frac{u_{3} u_{4}}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}} \\
& d=\frac{\left(u_{1}+u_{2}\right)\left(u_{1}^{2}+u_{2}^{2}+u_{3} u_{4}\right)}{u_{3}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}\right)}
\end{aligned}
$$

for some distinct u_{1}, u_{2}, u_{3}, and $u_{4} \in \mathbb{Q}$, $u_{3} \neq 0, u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4} \neq 0$. In this case, there are two rational points, $p_{1}=u_{1} / u_{3}$ and $p_{2}=u_{2} / u_{3}$ and these two are cyclically permuted by the function $g(y)$.

Proof. To classify cubic polynomials with periodic points of period two. If p_{1} and p_{2} are
two distinct rational numbers such that $g\left(p_{1}\right)=p_{2} \quad$ and $g\left(p_{2}\right)=p_{1}$, then $p_{2}=$ $g\left(p_{1}\right)=a p_{1}^{3}+b p_{1}+d$ implies that $c=p_{2}-$ $a p_{1}^{3}-b p_{1}$. Now that $p_{1}=g^{2}\left(p_{1}\right)=g\left(p_{2}\right)=$ $a p_{2}^{3}+b p_{2}+p_{2}-a p_{1}^{3}-b p_{1}$, one has

$$
\left(p_{1}-p_{2}\right)\left(1+b+a\left(p_{1}^{2}+p_{1} p_{2}+p_{2}^{2}\right)\right)=0 .
$$

One sets $P_{1}=a p_{1}, P_{2}=a p_{2}$. Since $p_{1} \neq$ p_{2}, it follows that we need to find a rational point on the following conic C in $\mathbb{Q}\left[P_{1}, P_{2}, a, b, Z\right]$

$$
a Z+a b+P_{1}^{2}+P_{1} P_{2}+P_{2}^{2}=0
$$

The point $\quad P=\left(P_{1}: P_{2}: a: b: Z\right)=$ ($0: 0: 0: 0: 1$) is a rational point that lies on the latter projective conic. In what follows we find a parametrization for the solutions on this conic. One has the rational map $\phi: \mathbb{P}_{\mathbb{Q}}^{3} \rightarrow C$ such that $\phi(Q)$, where $Q=\left(u_{1}: u_{2}: u_{3}: u_{4}: 0\right)$, is the intersection of the line that joins the points Q and P with C. We assume that the line L spanned by P and Q is given by $\mu Q+\lambda P=$ $\left(\mu u_{1}: \mu u_{2}: \mu u_{3}: \mu u_{4}: \lambda\right)$. Then the intersection with C is given by

$$
\begin{gathered}
\left(P_{1}, P_{2}, a, b, Z\right)=\left(u_{3} u_{1}: u_{3} u_{2}: u_{3}^{2}: u_{3} u_{4}\right. \\
\left.:-u_{1}^{2}-u_{1} u_{2}-u_{2}^{2}-u_{3} u_{4}\right) .
\end{gathered}
$$

So $\quad p_{1}=P_{1} / a=u_{1} / u_{3}, p_{2}=P_{2} / a=u_{2} /$ u_{3}, and $d=p_{2}-a p_{1}^{3}-b p_{1}$.

Theorem 2.3 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(z)$ has rational periodic points of period one and rational periodic points of period two if and only if

$$
\begin{gathered}
a=\frac{u_{3}^{2}\left(u_{1}+u_{2}-2 q u_{3}\right)}{\left(u_{1}-q u_{3}\right)\left(-u_{2}+q u_{3}\right)\left(u_{1}+u_{2}+q u_{3}\right)} \\
b= \\
+\left[-u_{1}^{3}-u_{2}^{3}+q u_{2}^{2} u_{3}+q^{3} u_{3}^{3}+u_{1}^{2}\left(-u_{2}\right.\right. \\
\left.\left.+q u_{3}\right)+u_{1} u_{2}\left(-u_{2}+q u_{3}\right)\right]\left[\left(u_{2}-q u_{3}\right)\right. \\
\\
\left.\times\left(-u_{1}+q u_{3}\right)\left(u_{1}+u_{2}+q u_{3}\right)\right]^{-1} \\
d= \\
\quad\left[q\left(u_{1}+u_{2}\right)\left(u_{1}^{2}-u_{1} u_{2}+u_{2}^{2}-q^{2} u_{3}^{2}\right)\right] \\
\\
\times\left[(u _ { 1 } - q u _ { 3 }) (- u _ { 2 } + q u _ { 3 }) \left(u_{1}+u_{2}\right.\right. \\
\left.\left.+q u_{3}\right)\right]^{-1}
\end{gathered}
$$

for some distinct u_{1}, u_{2}, and $u_{3} \in \mathbb{Q}, q \in \mathbb{Q}$, $u_{3} \neq 0, q \neq u_{1} / u_{3}, u_{2} / u_{3}$ and $-\left(u_{1}+u_{2}\right) / u_{3}$. In this case, q is the rational periodic point of period 1 also p_{1} and p_{2} are the rational periodic points of period 2, and where $p_{1}=u_{1} / u_{3}$ and $p_{2}=u_{2} / u_{3}$.

Proof. To classify if there exist cubic polynomials with periodic points of period one
and period two points. If $g(y)=a y^{3}+b y+d$ has a rational periodic points of period two, then by Theorem 2.2

$$
\begin{array}{r}
a=-\frac{u_{3}^{2}}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}} \\
b=-\frac{u 3 u 4}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}} \\
d=\frac{\left(u_{1}+u_{2}\right)\left(u_{1}^{2}+u_{2}^{2}+u_{3} u_{4}\right)}{u_{3}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}\right)}
\end{array}
$$

Without loss of generality, we may assume that $g(q)=q$, hence

$$
\begin{aligned}
& q=g(q)=a q^{3}+b q+c \\
& 0=\left[-u_{1}^{3}-u_{1}^{2} u_{2}-u_{1} u_{2}^{2}-u_{2}^{3}+q u_{1}^{2} u_{3}\right. \\
& \quad+q u_{1} u_{2} u_{3}+q u_{2}^{2} u_{3}+q^{3} u_{3}^{3}+u_{4} u_{3}\left(-u_{1}\right. \\
& \left.\left.\quad-u_{2}+2 q u_{3}\right)\right]\left[u _ { 3 } \left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right.\right. \\
& \left.\left.\quad+u_{3} u_{4}\right)\right]^{-1}
\end{aligned}
$$

or

$$
\begin{gathered}
u_{4}=\left[u_{1}^{3}+u_{1}^{2} u_{2}+u_{1} u_{2}^{2}+u_{2}^{3}-q u_{1}^{2} u_{3}\right. \\
\left.-q u_{1} u_{2} u_{3}-q u_{2}^{2} u_{3}-q^{3} u_{3}^{3}\right] \\
\times\left[u_{3}\left(-u_{1}-u_{2}+2 q u_{3}\right)\right]^{-1}
\end{gathered}
$$

3 Preperiodic points

For any two positive integers m and n a rational point p is said to be rational preperiodic point of type m_{n} for $g(z) \in \mathbb{Q}[z]$ if it gives an m-cycle after n-iterations, we can see the following example, the point $-1 / 3$ is of type 2_{3} for $g(z)=(3 / 4) z^{3}-(19 / 12) z-$ $1 / 6$, since its orbits are

$$
-1 / 3,1 / 3,-2 / 3,2 / 3,-1,2 / 3,-1,2 / 3, \ldots \ldots
$$

Theorem 3.1 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic points of type 1_{1} if and only if

$$
\begin{gathered}
a=-\frac{U}{\lambda^{2}} \\
b=\frac{U\left(\mu^{2}+\mu \lambda+\lambda^{2}\right)}{\lambda^{2}} \\
d=\frac{\lambda^{2}-U \lambda \mu-U \mu^{2}}{\lambda}
\end{gathered}
$$

for some distinct μ, λ, and $U \in \mathbb{Q}, \lambda \neq 0$. In this case, μ is the rational periodic point of period 1_{1}.

Proof. To classify cubic polynomials with preperiodic points of type 1_{1}. If $g(y)=a y^{3}+$ $b y+d$ has a rational preperiodic point μ of type 1_{1}, then by Theorem $2.1 a=-U / \lambda^{2}$,
$b=U-(V / \lambda)+1$, and $d=V$. Without loss of generality, we may assume that $f(\mu)=\lambda$, Hence $\quad \lambda=V+\mu(1+U-V / \lambda)-\left(\mu^{3} U\right) / \lambda^{2}$ or $V=-\mu U-\left(\mu^{2} U\right) / \lambda+\lambda$.

Theorem 3.2 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic points of type 1_{2} if and only if

$$
\begin{gathered}
a=\frac{\lambda\left(-\mu^{3}+\lambda^{2} v+\mu^{2} v-v^{3}+\lambda \mu(-\mu+v)\right)}{(\lambda-v)(-\mu+v)(\lambda+\mu+v)} \\
b=\frac{\lambda-\mu}{((\lambda-v)(-\mu+v)(\lambda+\mu+v)} \\
d=\frac{-\lambda^{3}+\mu^{3}}{(\lambda-v)(-\mu+v)(\lambda+\mu+v)}
\end{gathered}
$$

In this case, v is the rational periodic point of period 1_{2}.

Proof. To classify cubic polynomials with preperiodic points of type 1_{2}. If $g(y)=a y^{3}+$ $b y+d$ has a rational preperiodic point μ of type 1_{2}, then by Theorem $3.1 a=-U / \lambda^{2}, b=$ $\left(U\left(\mu^{2}+\mu \lambda+\lambda^{2}\right)\right) / \lambda^{2}, \quad$ and $\quad d=-\mu U-$ $\left(\mu^{2} U\right) / \lambda+\lambda$. Without loss of generality, we may assume that $f(v)=\mu$, Hence $\mu=$ $\left(-v^{3} U+\mu^{2} U(v-\lambda)+\mu U(v-\lambda) \lambda+\right.$ $\left.v U \lambda^{2}+\lambda^{3}\right) / \lambda^{2}$ or

$$
U=-\frac{\lambda^{2}(\lambda-\mu)}{(\lambda-v)(-\mu+v)(\lambda+\mu+v)}
$$

Theorem 3.3 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic
points of type 1_{3} if and only if

$$
a=\left[-v^{3}-u^{2} w+u\left(v^{2}+w^{2}\right)\right][(u-
$$

v) $v(u-w)(v-w) w]^{-1}$

$$
b=\left[\left(-u^{2} v^{2}+v^{4}+u^{3} w-\right.\right.
$$

$\left.u w^{3}\right)\left(2 u^{6} w^{2}-u^{5}\left(4 v^{2} w+9 w^{3}\right)+v^{5}\left(2 v^{3}\right.\right.$
$\left.-9 v w^{2}+9 w^{3}\right)+u^{4}\left(2 v^{4}+9 v^{3} w+\right.$
$\left.9 v w^{3}+14 w^{4}\right)+u v^{2}\left(-9 v^{5}+9 v^{4} w\right.$
$\left.+9 v^{3} w^{2}-22 v^{2} w^{3}+9 v w^{4}-9 w^{5}\right)-$
$u^{3}\left(9 v^{5}-4 v^{4} w+18 v^{3} w^{2}-4 v^{2} w^{3}\right.$
$\left.+18 v w^{4}+9 w^{5}\right)+u^{2}\left(14 v^{6}-\right.$
$18 v^{5} w+18 v^{4} w^{2}+9 v^{2} w^{4}+9 v w^{5}+$ $\left.2 w^{6}\right)$)]

$$
\times\left[2 7 (u - v) v (u - w) (v - w) w \left(v^{3}+\right.\right.
$$ $\left.\left.u^{2} w-u\left(v^{2}+w^{2}\right)\right)^{2}\right]^{-1}$

$$
d=\left[-243(u-v)^{2} v^{2}(u-w)^{2}(v-\right.
$$

$w)^{2} w^{2}\left(v^{3}+u^{2} w-u\left(v^{2}+w^{2}\right)\right)^{3}\left(u^{3} w\right.$

$$
\begin{aligned}
& +v^{2}\left(v^{2}+3 v w^{2}-3 w^{3}\right)-u\left(3 v^{3} w+\right. \\
& \left.w^{3}-3 v w^{3}\right)+u^{2} v\left(-3 w^{2}+v(-1\right. \\
& +3 w)))]\left[\left(2 v^{8}+2 u^{6} w^{2}-u^{5}\left(4 v^{2} w+\right.\right.\right. \\
& \left.9 w^{3}\right)-u\left(9 v^{7}+4 v^{4} w^{3}\right)+u^{4}\left(2 v^{4}\right. \\
& \left.+9 v^{3} w+9 v^{2} w^{2}+14 w^{4}\right)- \\
& u^{3}\left(9 v^{5}+5 v^{4} w+18 v^{3} w^{2}+5 v^{2} w^{3}+9 w^{5}\right) \\
& +u^{2}\left(14 v^{6}+9 v^{4} w^{2}+9 v^{3} w^{3}+\right. \\
& \left.\left.2 w^{6}\right)\right)\left(2 u^{6} w^{2}+v^{5}\left(-3 v^{2}+2 v^{3}-9 v w^{2}\right.\right. \\
& \left.+9 w^{3}\right)-u^{5} w\left(4 v^{2}+3 w(1+3 w)\right)+ \\
& u^{2}\left(14 v^{6}+v^{5}(3-18 w)+9 v w^{5}\right. \\
& +w^{5}(-3+2 w)+3 v^{2} w^{3}(-1+ \\
& \left.3 w)+3 v^{4} w(-1+6 w)\right)-u^{3}\left(9 v^{5}+v^{4}(3\right. \\
& -4 w)+v^{2}(3-4 w) w^{2}+18 v w^{4}+ \\
& \left.3 w^{4}(-1+3 w)+3 v^{3} w(1+6 w)\right) \\
& +u v^{2}\left(-9 v^{5}+9 v^{3} w^{2}+v^{2}(3-\right. \\
& 22 w) w^{2}-9 w^{5}+3 v w^{3}(1+3 w)+v^{4}(3 \\
& +9 w))+u^{4}\left(2 v^{4}+6 v^{2} w+9 v^{3} w+\right. \\
& \left.9 v w^{3}+w^{3}(3+14 w)\right)\left(2 u^{6} w^{2}\right. \\
& +u^{5} w\left(-4 v^{2}+3(1-3 w) w\right)+ \\
& v^{5}\left(3 v^{2}+2 v^{3}-18 v w^{2}+18 w^{3}\right)+u^{2}\left(14 v^{6}\right. \\
& -9 v^{3} w^{3}+18 v w^{5}+w^{5}(3+2 w)+ \\
& 3 v^{2} w^{3}(1+6 w)+3 v^{4} w(1+9 w) \\
& \left.-3 v^{5}(1+12 w)\right)+u^{3}\left(-9 v^{5}+\right. \\
& 3 v^{3}(1-6 w) w-36 v w^{4}-3 w^{4}(1+3 w) \\
& \left.+v^{4}(3+13 w)+v^{2} w^{2}(3+13 w)\right)+ \\
& u^{4}\left(2 v^{4}+9 v^{3} w+18 v w^{3}-3 v^{2} w(2\right. \\
& \left.+3 w)+w^{3}(-3+14 w)\right)- \\
& u v^{2}\left(9 v^{5}+v^{4}(3-18 w)-18 v^{3} w^{2}+3 v(1\right. \\
& -6 w) w^{3}+18 w^{5}+v^{2} w^{2}(3+ \\
& \text { 40w))) }]^{-1} \text {. }
\end{aligned}
$$

Proof. To classify cubic polynomials with preperiodic points of type 1_{3}. If $g(y)=a y^{3}+$ $b y+d$ has μ as a rational preperiodic point of type 1_{3}, then by Theorem 3.2
$a=\left[\lambda\left(-\mu^{3}+\lambda^{2} v+\mu^{2} v-v^{3}+\lambda \mu(-\mu\right.\right.$

$$
+v))][(\lambda-v)(-\mu+v)(\lambda+\mu+v)]^{-1}
$$

$b=\frac{\lambda-\mu}{((\lambda-v)(-\mu+v)(\lambda+\mu+v)}$
$d=\frac{-\lambda^{3}+\mu^{3}}{(\lambda-v)(-\mu+v)(\lambda+\mu+v)}$
we may assume that $g(\xi)=v$ without loss of generality, Hence
$v=g(\xi)=a \xi^{3}+b \xi+d$
$0=\left[-\lambda^{2}(\mu-v)^{2}-\mu^{2} v^{2}+v^{4}+\lambda^{3}(v\right.$

$$
\begin{gathered}
-\xi)+\mu^{3} \xi-\mu \xi^{3}-\lambda\left(\mu^{3}-2 \mu^{2} v\right. \\
\left.\left.+\mu v^{2}+v^{3}-\xi^{3}\right)\right][(\lambda-v)(-\mu+v)(\lambda \\
+\mu+v)]^{-1}
\end{gathered}
$$

Since λ, μ, v and ξ must be distinct, then Setting $u=\mu-\lambda, v=v-\lambda$ and $w=\xi-\lambda$, and we assume moreover that $\lambda+\mu+\nu \neq 0$ or $3 \lambda+u+v \neq 0$, to make the denominator not equal zero, that gives
$\lambda=\frac{u^{2} v^{2}-v^{4}-u^{3} w+u w^{3}}{3\left(v^{3}+u^{2} w-u\left(v^{2}+w^{2}\right)\right)}$.
Moreover, $\quad \mu=\lambda+u, \quad v=\lambda+v \quad$ and $\xi=\lambda+w$ where a, b and d are obtained from above.

Theorem 3.4 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic points of type 2_{1} if and only if
$a=\frac{u_{3}}{u\left(2 u_{1}+u_{2}+u u_{3}\right)}$
b
$=-\frac{u_{1}^{2}+u_{2}^{2}+u u_{2} u_{3}+u^{2} u_{3}^{2}+u_{1}\left(u_{2}+2 u u_{3}\right)}{u u_{3}\left(2 u_{1}+u_{2}+u u_{3}\right)}$
d
$=\frac{\left(u_{1}+u_{2}\right)\left(u u_{3}\left(u_{2}+u u_{3}\right)+u_{1}\left(u_{2}+2 u u_{3}\right)\right)}{u u_{3}^{2}\left(2 u_{1}+u_{2}+u u_{3}\right)}$
$u \neq 0, u_{3} \neq 0,2 u_{1}+u_{2}+u u_{3} \neq 0$, In this case, $q_{1}=\left(u_{1}+u u_{3}\right) / u_{3}$ is a periodic point of type 2_{1} and its orbits are $p_{1}=u_{1} / u_{3}$ and $p_{2}=u_{2} / u_{3}$.

Proof. To classify cubic polynomials with preperiodic points of type 2_{1}. If $g(y)=a y^{3}+$ $b y+d$ has a rational preperiodic point p of type 2_{1}, then by Theorem 2.2
$p=\frac{u_{1}}{u_{3}}$
$a=-\frac{u_{3}^{2}}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}}$
$b=-\frac{u 3 u 4}{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}}$
$d=\frac{\left(u_{1}+u_{2}\right)\left(u_{1}^{2}+u_{2}^{2}+u_{3} u_{4}\right)}{u_{3}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}\right)}$
We may assume that $g(q)=p$ without loss of generality, Hence
$p=g(q)=a q^{3}+b q+d$
$0=\left[u_{2}^{3}+u_{2} u_{3} u_{4}-q u_{3}^{2}\left(q^{2} u_{3}+u_{4}\right)\right]$
$\times\left[u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}+u_{3} u_{4}\right]^{-1}$
or
$u_{4}=-\frac{\left(u_{2}^{2}+q u_{2} u_{3}+q^{2} u_{3}^{2}\right)}{u_{3}}$.
Theorem 3.5 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic points of type 2_{2} if and only if

$$
\begin{gathered}
a=\left[-u^{2}-u(v+w)+v(v+w)\right][u(u \\
-v) \times v(v+w)]^{-1} \\
b=\left[u^{6}+u^{5}(2 v+3 w)+v^{2}(v\right. \\
+w)^{2}\left(v^{2}+v w+w^{2}\right)-u v(v+w)^{2}\left(3 v^{2}\right. \\
\left.+v w+2 w^{2}\right)+u^{4}\left(-2 v^{2}+v w+4 w^{2}\right) \\
+u^{3} \times\left(-2 v^{3}-5 v^{2} w+3 w^{3}\right)+u^{2}\left(4 v^{4}\right. \\
\left.\left.+6 v^{3} w-v w^{3}+w^{4}\right)\right][3 u(u-v) v(v \\
\left.+w)\left(u^{2}+u(v+w)-v(v+w)\right)\right]^{-1} \\
d=\left[\left(2 u^{3}+u w(v+w)+u^{2}(2 v+3 w)\right.\right. \\
\left.-v\left(2 v^{2}+3 v w+w^{2}\right)\right)\left(u^{6}+u^{5}(2 v+3 w)\right. \\
-u v(v+w)^{2}\left(9 v^{2}+v w-4 w^{2}\right)+v^{2}(v \\
+w)^{2}\left(v^{2}+v w-2 w^{2}\right)+u^{4}\left(-8 v^{2}-5 v w\right. \\
\left.+w^{2}\right)-u^{3}\left(2 v^{3}+11 v^{2} w+12 v w^{2}\right. \\
\left.+3 w^{3}\right)+u^{2}\left(16 v^{4}+30 v^{3} w+15 v^{2} w^{2}\right. \\
\left.\left.\left.-v w^{3}-2 w^{4}\right)\right)\right]\left[2 7 u (u - v) v (v + w) \left(u^{2}\right.\right. \\
\left.\quad+u(v+w)-v(v+w))^{2}\right]^{-1}
\end{gathered}
$$

$u \neq 0, v \neq 0, w \neq 0$ and $u^{2}+u(v+w)-$ $v(v+w) \neq 0$, In this case, q_{2} is a periodic point of type 2_{2} and its orbits are q_{1}, p_{1} and p_{2} where.

$$
\begin{gathered}
q_{2}=\left[-u^{3}+2 u^{2} v-v\left(2 v^{2}+3 v w+w^{2}\right)\right. \\
\left.+u\left(3 v^{2}+4 v w+w^{2}\right)\right]\left[3 \left(u^{2}+u(v+w)\right.\right. \\
\quad-v(v+w))]^{-1} \\
q_{1}=\left[2 u^{3}+v^{3}-v w^{2}+u^{2}(2 v+3 w)\right. \\
\left.+u\left(-3 v^{2}-2 v w+w^{2}\right)\right]\left[3 \left(u^{2}+u(v\right.\right. \\
+w)-v(v+w))]^{-1} \\
p_{1}=\left[-u^{3}-u^{2} v+v^{3}-v w^{2}+u w(v\right. \\
+w)]\left[3\left(u^{2}+u(v+w)-v(v+w)\right)\right]^{-1} \\
p_{2}=\left[-u^{3}-2 u w(v+w)-u^{2}(v+3 w)\right. \\
\left.+v\left(v^{2}+3 v w+2 w^{2}\right)\right]\left[3 \left(u^{2}+u(v+w)\right.\right. \\
-v(v+w))]^{-1}
\end{gathered}
$$

Proof. To classify cubic polynomials with preperiodic points of type 2_{2}. If $g(y)=a y^{3}+$ $b y+d$ has a rational preperiodic point q_{2} of type 2_{2}, then by Theorem 3.4
$a=\frac{u_{3}}{u\left(2 u_{1}+u_{2}+u u_{3}\right)}$
b
$=\frac{-u_{1}^{2}-u_{2}^{2}-u u_{2} u_{3}-u^{2} u_{3}^{2}-u_{1}\left(u_{2}+2 u u_{3}\right)}{u u_{3}\left(2 u_{1}+u_{2}+u u_{3}\right)}$,
d
$=\frac{\left(u_{1}+u_{2}\right)\left(u u_{3}\left(u_{2}+u u_{3}\right)+u_{1}\left(u_{2}+2 u u_{3}\right)\right)}{u u_{3}^{2}\left(2 u_{1}+u_{2}+u u_{3}\right)}$,
And q_{1} is rational preperiodic point of type 2_{1} and p_{1} and p_{2} are the points in its orbits where
$q_{1}=\frac{u u_{3}+u_{1}}{u_{3}}$
$p_{1}=\frac{u_{1}}{u_{3}}$
$p_{2}=\frac{u_{2}}{u_{3}}$
We may assume that $g\left(q_{2}\right)=q_{1}$ without loss of generality, Hence

$$
\begin{aligned}
& q_{1}=f\left(q_{2}\right)=a q_{2}^{3}+b q_{2}+d \\
& 0=\left[u_{1}^{2}\left(u_{2}-q_{2} u_{3}\right)+u_{1}\left(u_{2}^{2}-\left(q_{2}\right.\right.\right. \\
& \left.\quad-2 u) u_{2} u_{3}-2 u\left(q_{2}+u\right) u_{3}^{2}\right)+u_{3}\left(u u_{2}^{2}\right. \\
& \quad \\
& \quad+q_{2}^{3} u_{3}^{2}-u^{3} u_{3}^{2}-q_{2}\left(u_{2}^{2}+u u_{2} u_{3}\right. \\
& \\
& \left.\left.\left.\quad+u^{2} u_{3}^{2}\right)\right)\right]\left[u u_{3}^{2}\left(2 u_{1}+u_{2}+u u_{3}\right)\right]^{-1}
\end{aligned}
$$

Since $q_{2} \neq p_{1}$, one sets $q_{2}=p_{1}+v$ and $v \neq$ u, and also setting $u_{1}=u_{2}+u_{3} w$ and $w \neq u / u_{3}$ and v / u_{3} that gives

$$
\begin{gathered}
0=3 u_{3}\left(u_{2}+u_{3} w\right)\left[u _ { 3 } \left(u^{3}+2 u w(v+w)\right.\right. \\
\left.-v(v+w)(v+2 w)+u^{2}(v+3 w)\right) \\
\left.+u_{2}\left(3 u^{2}+3 u(v+w)-3 v(v+w)\right)\right] \\
\times\left[3 u u_{1} u_{3}\left(2 u_{1}+u_{2}+u u_{3}\right)\right]^{-1}
\end{gathered}
$$

Since $u_{3} \neq 0$ and $u_{1} \neq 0$ then $u 2+u 3 w \neq 0$, then the parameter u_{2} is given by

$$
\begin{gathered}
u_{2}=\left[-u 3\left(u^{3}+2 u w(v+w)+u^{2}(v+3 w)\right.\right. \\
-v\left(v^{2}\right. \\
\left.\left.\left.+3 v w+2 w^{2}\right)\right)\right]\left[3 \left(u^{2}+u v-v^{2}+u w\right.\right. \\
-v w)]^{-1}
\end{gathered}
$$

Moreover $\quad u_{1}=u_{2}+w u_{3}, p_{1}=u_{1} / u_{3} \quad$ and $q_{2}=p_{1}+w$ and q_{1}, p_{2}, a, b and d are obtained from above.
Theorem 3.6 If $g(y)=a y^{3}+b y+d$ with a, b and $d \in \mathbb{Q}$, Then $g(y)$ has rational preperiodic points of type 2_{3} if $a=$ $1 /\left(12 v^{2}\right), b=-19 / 12$ and $d=v / 2$, and $q_{3}=v$ is a preperiodic point of type 2_{3} and the other points in its orbit are $q_{2}=-v, q_{1}=$ $2 v, p_{1}=-2 v$ and $p_{2}=3 v$.
Proof. To classify cubic polynomials with preperiodic points of type 2_{3}. If $g(y)=a y^{3}+$ $b y+d$ has a rational preperiodic point q_{3} of type 2_{2}, then by Theorem 3.5

$$
\begin{gathered}
a=\frac{-u^{2}-u(v+w)+v(v+w)}{u(u-v) v(v+w)} \\
b=\left[u^{6}+u^{5}(2 v+3 w)+v^{2}(v+w)^{2}\left(v^{2}\right.\right. \\
\left.+v w+w^{2}\right)-u v(v+w)^{2}\left(3 v^{2}+v w\right. \\
\left.+2 w^{2}\right)+u^{4}\left(-2 v^{2}+v w+4 w^{2}\right) \\
+u^{3}\left(-2 v^{3}-5 v^{2} w+3 w^{3}\right)+u^{2}\left(4 v^{4}\right. \\
\left.\left.+6 v^{3} w-v w^{3}+w^{4}\right)\right] \times[3 u(u-v) \\
\left.\times v(v+w)\left(u^{2}+u(v+w)-v(v+w)\right)\right]^{-1} \\
d=\left[\left(2 u^{3}+u w(v+w)+u^{2}(2 v+3 w)\right.\right. \\
\left.-v\left(2 v^{2}+3 v w+w^{2}\right)\right)\left(u^{6}+u^{5}(2 v+3 w)\right. \\
-u v(v+w)^{2}\left(9 v^{2}+v w-4 w^{2}\right)+v^{2}(v \\
+w)^{2}\left(v^{2}+v w-2 w^{2}\right)+u^{4}\left(-8 v^{2}-5 v w\right. \\
\left.+w^{2}\right)-u^{3}\left(2 v^{3}+11 v^{2} w+12 v w^{2}\right. \\
\left.+3 w^{3}\right)+u^{2}\left(16 v^{4}+30 v^{3} w\right. \\
\left.\left.\left.+15 v^{2} w^{2}-v w^{3}-2 w^{4}\right)\right)\right][27 u(u-v) v(v \\
\left.+w)\left(u^{2}+u\left(v+w_{2}\right)-v(v+w)\right)^{2}\right]^{-1}
\end{gathered}
$$

And q_{2} is rational preperiodic point of type 2_{2} and q_{1}, p_{1} and p_{2} are its orbits where

$$
\begin{gathered}
q_{2}=\left[-u^{3}+2 u^{2} v-v\left(2 v^{2}+3 v w+w^{2}\right)\right. \\
+u\left(3 v^{2}+4 v w\right. \\
\left.\left.+w^{2}\right)\right]\left[3\left(u^{2}+u(v+w)-v(v+w)\right)\right]^{-1} \\
q_{1}=\left[2 u^{3}+v^{3}-v w^{2}+u^{2}(2 v+3 w)\right. \\
+u\left(-3 v^{2}-2 v w\right. \\
\left.\left.+w^{2}\right)\right]\left[3\left(u^{2}+u(v+w)-v(v+w)\right)\right]^{-1} \\
p_{1}=-\frac{u^{3}+u^{2} v-v^{3}+v w^{2}-u w(v+w)}{3\left(u^{2}+u(v+w)-v(v+w)\right)} \\
\begin{array}{r}
p_{2}=\left[-u^{3}-2 u w(v+w)-u^{2}(v+3 w)\right. \\
\\
+v\left(v^{2}+3 v w\right.
\end{array} \\
\left.\left.+2 w^{2}\right)\right]\left[3\left(u^{2}+u(v+w)-v(v+w)\right]^{-1}\right.
\end{gathered}
$$

We may assume that $g\left(q_{3}\right)=q_{2}$ without loss of generality, Hence

$$
\begin{aligned}
& q_{2}=f\left(q_{3}\right)=a q_{3}^{3}+b q_{3}+d \\
& 0=\left[-27 q 3^{3}\left(u^{2}+u(v+w)-v(v\right.\right. \\
& +w))^{3}+9 u(u-v) v(v+w)\left(u^{2}+u(v\right. \\
& +w)-v(v+w))\left(u^{3}-2 u^{2} v\right. \\
& +v\left(2 v^{2}+3 v w+w^{2}\right)-u\left(3 v^{2}+4 v w\right. \\
& \left.\left.+w^{2}\right)\right)+\left(2 u^{3}+u w(v+w)+u^{2}(2 v\right. \\
& \left.+3 w)-v\left(2 v^{2}+3 v w+w^{2}\right)\right)\left(u^{6}\right. \\
& +u^{5}(2 v+3 w)-u v(v+w)^{2}\left(9 v^{2}+v w\right. \\
& \left.-4 w^{2}\right)+v^{2}(v+w)^{2}\left(v^{2}+v w-2 w^{2}\right) \\
& +u^{4}\left(-8 v^{2}-5 v w+w^{2}\right)-u^{3}\left(2 v^{3}\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.+11 v^{2} w+12 v w^{2}+3 w^{3}\right)+u^{2}\left(16 v^{4}\right. \\
\left.\left.+30 v^{3} w+15 v^{2} w^{2}-v w^{3}-2 w^{4}\right)\right) \\
+9 q_{3}\left(u^{2}+u(v+w)-v(v+w)\right)\left(u^{6}\right. \\
+u^{5}(2 v+3 w)+v^{2}(v+w)^{2} \\
\times\left(v^{2}+v w+w^{2}\right)-u v(v+w)^{2}\left(3 v^{2}\right. \\
\left.+v w+2 w^{2}\right)+u^{4}\left(-2 v^{2}+v w+4 w^{2}\right) \\
+u^{3}\left(-2 v^{3}-5 v^{2} w+3 w^{3}\right)+u^{2}\left(4 v^{4}\right. \\
\left.\left.\left.+6 v^{3} w-v w^{3}+w^{4}\right)\right)\right][27 u(u-v) v(v \\
\left.+w)\left(u^{2}+u(v+w)-v(v+w)\right)^{2}\right]^{-1}
\end{gathered}
$$

Since $q_{3} \neq p_{1}$, one sets $q_{3}=p_{1}+s$ and $s \neq u, v$, and w and that gives
$0=\left[-u(u-v) v(v+w)^{2}-s^{3}\left(u^{2}+u(v\right.\right.$
$+w)$
$-v(v+w))+s^{2}\left(u^{3}+u^{2} v-v^{3}+v w^{2}\right.$
$-u w(v+w))+s\left(u^{3} w+u v^{2}(v+w)\right.$
$\left.\left.-v^{2} w(v+w)+u^{2}\left(-v^{2}+w^{2}\right)\right)\right][u(u-v)$
$\times v(v+w)]^{-1}$
we can see that $u=4 v, w=-5 v$, and $s=3 v$ satisfies the last equation, Moreover $q_{2}, q_{1}, p_{1}, p_{2}, a, b$ and d are obtained from above and $q_{3}=p_{1}+s$.

Conclusion

In this paper we introduced a Complete parametrization of cubic polynomials that has:

1-Rational periodic points of period 1.
2-Rational periodic points of period 2 .
3-Rational periodic points of period 1 and
4-Rational preperiodic points of types $1_{1}, 1_{2}, 1_{3}, 2_{1}, 2_{2}$ and 2_{3}.

References

1 Narkiewicz, D., (1965),On polynomial transformations in several variables, Acta Arith, 11 163-168.
2 Lewis, D., (1972), Invariant sets of morphisms on projective and affine number spaces, Journal of Algebra, 20 419-434.
3 Call, G. and Silverman, J., (1993), Canonical heights on varieties with morphisms, Compos. Math. 89 163-205.
4 P. Morton and J. Silverman, (1994), Rational periodic points of rational functions, Internat. Math. Res. Notices, 2 97-110.
5 Merel, L.,(1994).Existence dâ€ ${ }^{T M}$ une borne uniforme pour les nombres premiers
de torsion des courbes elliptiques sur les corps de nombres, preprint,
6 E. V. Flynn, B. Poonen,B., and Schaefer, E., (1995).Cycles of quadratic polynomials and rational points on a genus 2 curve, preprint, preprint,
E. V. Flynn, B. Poonen and E. F. Schaefer, (1997), Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J., 90 435463.

8 R. Jones, (2008), The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc., 78 523-544.
9 H. Krieger, (2013), Primitive prime divisors in the critical orbit of $\mathrm{z}^{\wedge} \mathrm{d}+\mathrm{c}$, International Mathematics Research Notices, 23 5498-5525.

10 Morton, P., (1995).Arithmetic properties of periodic points of quadratic maps, II, preprint.,
11 P. Morton, (1998), Arithmetic properties of periodic points of quadratic maps. II., Acta Arith., 87 89-102.
12 Silverman, Joseph H (2007).The arithmetic of dynamical systems., Springer Science.,
13 B. Poonen, (1998), The classification of rational preperiodic points of quadratic polynomials over Q : a refined conjecture, Math. Z., 228 11-29.
14 M. Stoll, (2008), Rational 6-cycles under iteration of quadratic polynomials, London Math. Soc. J. Comput. Math., 11 367-380.

