Mansoura University 2013
Faculty of Engineering
Department of Engg. Math. and Phys.

Time: 180 min Real Analysis M. Sc. Exam

[1]-(a) If $X=(x_n)$ and $Y=(y_n)$ are convergent sequences real numbers and if $x_n \leq y_n$ for all $n \in N$ then prove that

$$\lim (x_n) \le \lim (x_n)$$

(b) If $X = (x_n)$ is a convergent sequence of real numbers and i $x_n \ge 0$ for all $n \in N$ then prove that

$$x = \lim (x_n) \ge 0.$$

(c) Let (x_n) be a sequence of positive real numbers such that $L = \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n}\right)$ exists. Prove that, if L < 1, then (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$.

(d) Use the Squeeze Theorem to determine the limit

$$\left((n)^{1/n^2} \right)$$

(e) Prove that every contractive sequence is a cauchy sequence and convergent.

[2]-(a) If $A \subseteq \mathbb{R}$, and $f: A \to \mathbb{R}$ has a limit at $c \in \mathbb{R}$ then prove that, f is bounded on some neighborhood of c.

(b) Show that if c > 1, then the following series is convergent

$$\sum \frac{1}{n (\ln n) (\ln \ln n)^c}$$

(c) Suppose that $\lim_{x\to x} f(x) = L$ where L>0 and that $\lim_{x\to x} g(x) = \infty$. Show that $\lim_{x\to x} f(x) g(x) = \infty$. If L=0, show by example that this conclusion may fail.

(d) If $f:A\to\mathbb{R}$ is a Lipschitz function, prove that f is uniformly continuous on A.

[3]-(a) Discuss the convergence or the divergence of the series with nth term $\overline{}$

1. $(\ln n)^{-\ln n}$, 2. $(\ln n) e^{-\sqrt{n}}$

(b) Suppose that $\sum a_n$ is a convergent series of real numbers. Either prove that $\sum b_n$ converges or given a counter-example, when we define b_n by

(1). $a_n \sin n$, (2). $\frac{a_n}{1 + |a_n|}$

(c) Prove that a Cauchy sequence of real numbers is bounded? Give an example of a bounded sequence that is not a Cauchy sequence.

[4]-(a) Show that if f_1, \ldots, f_n are in $\mathbb{R}[a, b]$ and if $k_1, \ldots, k_n \in \mathbb{R}$, then the linear combination

$$f = \sum_{i=1}^{n} k_i f_i$$

belongs to $\mathbb{R}[a,b]$ and

$$\int_a^b f = \sum_{i=1}^n k_i \int_a^b f_i.$$

(b) Let f be defined on [0, 2] by

$$f(x) = \begin{cases} -1, & x \neq 1; \\ 0, & x = 1. \end{cases}$$

Show that the Darboux integral exists and find its value.

Assoc. Prof. Dr. El-Gamel