Menoufia University

Faculty of Engineering, Shebin El-Kom, Basic Engineering science Department First Semester Examination, 2017-2018

Date of Exam: 19/5/2018

Subject: Operations research (1)

Code: BES 603

Year: postgraduate students Time Allowed: 3 hours Total Marks: 100 marks

Answer the following questions

(Question 1)

a) Reddy Mikks produces both interior and exterior paints from two raw materials, M_1 and M_2 . The following table provides the basic data of the problem:

	Tons of raw material per ton of		Maximum daily
	Exterior paint	Interior paint	availability (tons)
Raw material, M ₁	6	4	24
Raw material, M ₂	1	2	
Profit per ton (\$1000)	5	4	6

A market survey indicates that the daily demand for interior paint cannot exceed that for exterior paint by more than 1 ton. Also, the maximum daily demand for interior paint is 2 tons. Determine the optimum (best) product mix of interior and exterior paints that maximizes the total daily profit.

- (1) Graphical method
- (2) Simplex method
- (3) Write the dual problem
- b) Determine the maximum value of the function

$$f(x_1, x_2) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

By the steepest ascent method with initial point $x_0 = (1, 1)$ and $r = \frac{1}{4}$ for 3 iterations.

c) Solve the following problem

Maxmize
$$\mathbf{z} = 5\mathbf{x}_1 + 4\mathbf{x}_2$$
 subject to

$$\begin{aligned}
 x_1 + x_2 &\le 5 \\
 10x_1 + 6x_2 &\le 45
 \end{aligned}$$

 x_1 , x_2 nonnegative integer variables

- d) For the payoff matrix $M = \begin{bmatrix} 2 & -4 \\ -1 & 3 \end{bmatrix}$, use the Game theory principle to find the optimal strategies of the two players.
- e) How do you test the positive, negative, or indefiniteness of a square matrix [A]? Then what is the type of the following matrix?

$$A = \begin{bmatrix} 4 & -3 & 0 \\ -3 & 0 & 4 \\ 0 & 4 & 2 \end{bmatrix}$$

- f) Find the maximum of the function $x^5 10x^2 + 2$ in the interval [0, 1] using unrestricted search.
- g) Discuss with details the principles of goal programming approach and its applications.
- h) Find the efficient solution for the following multi-objective optimization problem when $w_1 = 0.4$ and $w_2 = 0.6$.

$$Min z = x_1 + 6 x_2$$

$$Min z = 6 x_1 + x_2$$

subject to

$$2 x_1 + 4 x_2 \ge 16$$

$$3 x_1 + 2 x_2 \ge 12$$

$$x_1, x_2 \ge 0$$