Mansoura University	Computer	Second Year Production
Faculty of Engineering	Computer	Full Mark: 100, Time: 3 Hours
Prod. & Mech. Design Dept.	Applications	Final Term Exam, January, 2011

Question1:(35Marks) Write Computer Programs that do the followings:

[5Marks]	. Solve the Quadratic Equation $ax^2 + bx + c = 0$.	1		
[6Marks]	. Find the factorial for a given number.	2		
[9Marks]	. Find the prime numbers between two limits a & b	3		
[9Marks]	Sort a set of numbers in an ascending order.			
[6Marks]	Find a number that leaves a remainder of 1 when divided			
	by 2, 3,4, 5, or 6 but is evenly divisible by 7.			

Question2:(20 Marks)

1. Design a Computer program to plot the crank-slider [8Marks] mechanism shown in figure (1).

2. Design a Computer program to find the Lagrange [12Marks] polynomial interpolation for the points in the table below; and to plot the resulting equation.

X	0	1	2	2	3	4	5	
У	0	2	4	7	18	27	60	

Figure (1)

Question3:(20 Marks)

Using figure (2), design a computer program to solve Merchant's Circle problem.

Inputs will be: Cutting Force (F_c) , Tangential Force (F_t) , Cutting Ratio (r), and Rake Angle (α) .

Outputs should be: Shear Angle (ϕ) , Shear Force (F_s) , Friction Force (F), F_t Normal-to-Friction Force (N), Normal-to-Shear Force (F_n) , Resultant Force (R), Coefficient of Friction (μ) , and Friction Angle (τ) .

Question4:(25 Marks)

Using Metric Programming System, write a computer program for an CNC Milling Machine to produce the **symmetrical** part shown in figure (3). The depth of cut is 3mm, the speed is 400 rpm, and the feed is 120 mm/min.

First make a program using the absolute system, then write another program using the incremental system. Start with points a1, a2,..., then b1, b2,..., then c1, c2,..., etc.

D1= 50 D2= 40 R1= 30 R2= 45 R3= 15

Dimensions are in mm

Questions are over.....
Good Luck,
Dr. Ahmed Galal

22 1 2011