| Menoufiya University | Dept.: Mechanical Power |
| :--- | :--- | :--- |
| Faculty of Engineering | Year: Third |
| Shebin El- Kom | Subject: Engineering Economy |
| Second Semester Examination | Code : PRE 328 |
| Academic Year: 2012-2013 | Time Allowed: 2 hours |
| Date: 18/6/2013 | Total Marks : 40 Marks |
| Examiner: Dr/ Mohamed Hesham Belal | |
| Allowed Tables and Charts: Tables -Interest Factors for Discrete Compounding are included with the Exam. | |
| This exam measures ILOS no.:(a7, a16, b8, b9, b10, c1). | |

Answer All The Following Questions:

Question No.(1):

[10 Mark]
(a)- Determine diagrammatically the elements of costs to state the selling price.
(b)- Write notes on the Economic Concepts: Sensitivity Analysis - Feasibility Studies - The Inventory and its important.
(c)- Define the different methods for economical assessment of projects, Stating for these methods the decision rule for a single project.

Question No.(2):

[10 Mark]

(a)- A special purpose machine was purchased for 300,000 L.E with an expected life of 15 years and a salvage value of 15,000 L.E.
What will be the depreciation charge and book value at the end of the tenth year?
Use: 1-Straight line method, 2-Declining balance method, and 3- Sum-of-years digit method.
(b)- The construction of a road is cost $12,000,000$ L.E. while its maintenance costs are:

- Annually started in end of the first year with amount 25,000 L.E. while it increases by 2,000 L.E. in the next ten years and 50,000 L.E. after that, and
- Periodically by 100,000 L.E. every five years. Note that the rate of compound interest of 9% annually and the road project's has been taken as long live project.
What is the capital cost and the annual equivalent cost?

Question No.(3):

[10 Mark]
(a)- If the first cost of equipment is 145,000 L.E. The annual return for this equipment in the first year is 35,000 L.E, while it decreases by amount 3,000 L.E annually. If the MARR is 9% using the present worth value method to indicate the sensitivity of the estimated life which its value fluctuate between 7 and 11 years. Then state the payback period for this equipment and the conditions to have economical feasibility.
(b)- A company needs to buy a new production line for brick. There are two proposals available to do the same job: A- Automatic production line, B-Half automatic production line. The next table has the cash flow money for the two proposals.

Proposal	First Cost (L.E.)	Annual operation cost (L.E.)	Annual labor cost (L.E.)	Salvage value (L.E.)	Estimated life (years)
A	260,000	25,000	30,000	40,000	14
B	100,000	15,000	60,000	10,000	7

Which one can be chosen to have economical feasibility if the annual rate of return is 9% by using: 1- The Present Worth Value method, 2- The Annual Equivalent Value method.

Question No.(4):

(a)- The demand for plastic components for a manufacturing company is 560 units per week. The production manager has estimated that the production cost is $5 \mathrm{~L} . \mathrm{E} /$ unit, the setup costs is $215 \mathrm{~L} . E /$ production run and holding cost is estimated at 1.8% of unit cost per month. The production manager stated that the production rate is 700 units/day. Assume 320 days/ year and 52 weeks/ year.
Calculate: 1-The optimum production quantity per run,
2- The optimum number of production runs per year and the cycle time,
3- The total annual inventory cost,
4- The reorder point if the lead time is 11 day.
5- Draw the inventory model showing all the information on it.
(b)- The following table shows the data of annual costs at two levels of tape player production. The sold selling price of a tape player is $40 \mathrm{~L} . \mathrm{E}$.

Costs items	$Q_{1}=6,000$ unit/year	$\mathbf{Q}_{2}=10,000$ unit/ year
Labor Costs	60,000	100,000
Material Costs	48,000	80,000
Fixed Costs	154,000	154,000

Use the mathematical and graphical methods to:
1- Find the break-even point and the profit or loss/year at production quantity 8,000 units,
2- Estimate the suitable production quantity for a profit equal 25% of the fixed cost,
3 - If the selling price is decreased by 15%, what is the break-even point and the profit or loss/year at production quantity 8,000 units.

INTEREST FACTORS FOR INTEREST RATE (9.0\%)

	Single Payment		Equal Payment Series				Gradient Series	
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Sinking Fund Factor	Present Worth Factor	Capital Recovery Factor	Gradient Uniform Serries	Gradient Present Worth
n	(F/P, i, n)	(P/F,i,n)	(F/A, i, n)	(A/F, i, n)	(P/A, i, n)	(A/P, i, n)	(A/G, i, n)	(P/G,i,n)
1	1.0900	0914	1.0000	1.0000	0.9174	10900:	0.0000	510000
2	1.1881	0.8417	2.0900	0.4785	1.7591	0.3685	0.4785	208447
3	1.2950	0.122	3.2781	03051	2.5313	03951	Q.9426	
4	1.4116	0.7084	4.5731	0.2187	3.2397	0.3087	1.3925	4 $4 \mathrm{Sk} \%$
5	1.5386	06499	5.9847	01671	3.8897	02571	1.8282	, M 40
6	1.6771	05963	7.5233	081329	4.4859	0.2229	2.2498	5-10.024
7	1.8280	0.5470	9.2004	911687	5.0330	0198\%	2.6574	340376
8	1.9926	0860	11.0285	00807	5.5348	01807	3.0512	W668827
9	2.1719	64604	13.0210	0676	5.9952	01668	3.4312	18059
10	2.3674	94224	15.1929	00658	6.4177	0.1559	3.7978	
11	2.5804	9387	17.5603	\%0569	6.8052	0.4469	4.1510	0625488
12	2.8127	Qasest	20.1407	EO4\%	7.1607	0.1397	4.4910	Whewiow
13	3.0658	80362\%	22.9534	00436	7.4869	101336	4.8182	
14	3.3417	02992	26.0192	60384	7.7862	31884	5.1326	
15	3.6425	$02 \% 4$	29.3609	$093+1$	8.0607	0124	5.4346	
16	3.9703	02519	33.0034	00303	8.3126	0.1203	5.7245	T4, 4.5884
17	4.3276	183114	36.9737	00870.	8.5436	0.170	6.0024	9710829
18	4.7171	109 200	41.3013	60242	8.7556	0.1142	6.2687	\% 5 \% 48886
19	5.1417	W195	46.0185	\%e212	8.9501	vill	6.5236	
20	5.6044	$\text { Gex } 88$	51.1601	Wovg	9.1285	K10s	6.7674	6thex

