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THE TRANSIENT MOTION OF A CURRENT LOOP
ALONG A CONDUCTING CYLINDRICAL SHELL
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Abstract

A mathematical and an analytical procedure for calculating the induced
surface eddy currents in a cylindrical shell due to an arbitrary moving
concentric current loop is developed. The consideration involves both uniform
and acceleraled moticns. The accelerated motion, has the form of a finite
ramp function, by which the current lcop moves with a constant acceleration
during a given time interval ta a certain velocity. The surface currents induced
in the cylindrical shell are governed by atime-dependent linear differential
equation, which is then solved by the method of Laplace transforms. A
soiution in the form of Fourier and convolution integrals is achieved. The
analytical solulion is demonstrated in a graphical form in which the induced
surface currents for both uniform and accelerated motion are presented. The
solution so cbtained is then extended to an arbitrary motion. The force acting
on the moving current loop is also calculated and the results are presented in

analytical and graphical forms.
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1. Introduction

There are many applications in today's technology for eddy currents. Some of
these applications fall in the following categories: Cylindrical geometry with excitation
caused by concentric circular cumrent loops, cylindrical geometry with excitation
originated from rotating fields, and finally cylindrical geometry with excitation coming
from moving circular current loops. These cases arise in applications such as non-
destructive testing of materials, induction heating, and magnetic levitation [11-13].

Many interesting aspects of magnetic levitation have led to the examination of
problems related to the motion of exciting sources near conducting media. The
induced eddy currents within a conducting medium interact with the excitation
sources, resulting in forces which can be used for levitation of the moving part
carrying the excitation circuit. As a resull of the motion of the loop, eddy currents
develop within the conducting cylindrical shell in the form of surface currents, while a
lift force is exerted on the suspension system.

Many books [1-4] and papers [5-8] have dealt with the analytical sludy of eddy
currents in solid conducting cylinders and cylindrical shells, in which the excitation is
due io axially directed parallel wires, stationary and rotating around the cylinder. The
problem of interest in this investigation however, is related to a current loop

surrounding a cylindrical shell and moving along the axes.

2. Formulation of the problem
A concentric circular current loop of radius a carries a time-independent current /,

and moves along a thin-walled conducting cylindrical shell with an arbitrarily velocity
v=v{t). The cylindrical shelt is of radius a, conductivity o , and thickness » much

less than the skin depth &, see figure 1.
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Fig. 1 A circular concentric current loop of radius &
around a conducting thin ¢ylindrcal shell of
radius o

3. Development of the solution

The present skin effect problern is solved using the solenoidal magnetic vector
polential A= A(F.r) with dir 4=0. The magnetic flux densily B= B{F.1) is then
obtained from B=cwrtd. According to the configuration, figure (1), the exciting
magnetic vector potential of the current loop 4, = 4,(F.1) is rotationally symmetric
and has only one ¢-direcled component in the c¢ylindrical cocrdinate system
{p.p,2), which is a function of the space coordinates o and : as well as of time 1 :
AP = é,4,. (p.z.1). Because of the thin cylindrical shell, the induced eddy currents
due to the moticn of the loop. are surface currents with surface currenl density
K=& K, (z.t) The electric field intensity £ = E(7.1) is relaled to the surface current
density K by Ohm's law £ =K/och The induced surface curenis cause a

distnbuted field in the surrounding nen-conducting medium, which has a ¢ —directed
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vector potential as a function of the space coordinates o and z as well as time .

A= A(r,1)=E A,(p,z.0). This vector potential will be called the excited vector
potential. The redation between the exciting vector potential /'i, and the excited veclor

potential 4 can be obtained by applying Faraday's law at the cylinder surface p=a:
=~ d¥ deta .08 d = = o
Edét=-—c=-—|(B+B)dS=-— i(B+8,)ds 1
f-[ - = !j( ) = {jcw( ) (1)
The surface integral on the nght hand-side of the above relation can be converted
into a contour integral by applying Stoke's theorem:;

K - d;-+ -.-
—df=——q(A+ A )dt

Joh dt ?..( o)

Since all the vector quantities in the above relation are ¢ —directed, one can write at

once:
A LA LA AN r} LA

In order 1o satisfy the boundary conditions at the cylinder surface, it is necessary lo
expand the surface current density X, in terms of the orthogonal functions of the
exciting field 4,,.

The above differential equation is best solved by Laplace transformation. The

differential equation is therefore considered in the frequency domain. The solution in
the time domain ¢ is then obtained by taking the inverse transform.

3.1 The fieid of the moving current loop
In the absence of the conducting cylinder, the exciting field is a field in a non-

conducting medium, which can be determined by the exciting vector potential }i,, for
which the following vector field equation is valid: curf curl 4, =0. The exciting vector
potential is solenoidal, ¢ - directed, and rotationally symmetric. A4, = e A, (pzi).

The vector field equation is then reduced to the following scalar partial differential

equation:
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By the separation of variables, the solution will consist of trigonometric functions of
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argument (mz) and modified Bessel functions of the first and second kind of the
argument {mp)} and order one. For a circular current loop of radius 4, which passes
the coordinate z =0 at a certain time 1 =0, the exciting potential can be expressed in

the form of a Fourier integral as follows:

A, = pyd, JIC{m) 1,{mp) cos(mz) dm for 0<p<h (4 a)
0

A, = pdy [Dim) K (mp) costmz)dm  for  bsp<aw (4 b)
[+

1,(¢) and K, ({') denote the modified Bessel functions of the first and second kind of
the argument £ and order one respectively. Crmj and Dfm, are unknown functions
to be determined from the boundary conditions, which require as first, the continuity
of the potential 4, at p=5. The second boundary condilion can be obtained from
Ampere’s law by performing the contour integral

B di=1, (5)
M

as indicated in figure 1. Therefore, the potential 4, will be:

4, =y0}n£ IK‘{mb) I(mp)cos(mz)dm for0<p<h {6 a)
T ]

A, =y‘,f0-£- I!,(mb) Kimp)cosimz)dm for b p<wx {6 D)
b

The time dependence of the exciting potential 4, of the moving current loop can be

taken into account, by replacing the argument : in the cosine funclion by
"=z -t v(t). The exciting potential of the moving current loop will be:

4, =yu!0—b- IK,{mb) Ifmp)cosim{z—t1vft}}}dm for 0<p<h (7 a)
T ]

4, =;;o!u—£- I!,{mb} Ki(mp)eosfmfz~ev(t))}dm for hb<p<w (7 b)
9
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3.2 The distributed field
With the presence of the conducling cylindrical shell, eddy currents are induced in the
shell and cause a distributed field in the surrounding medium, for which the potential

A=g,4, is determined by the solution of the vector field equation:
curl curl (€4, ) = 0. Since the distributed field is solenoidal and rotationally symmetric,

the vector field equation is also reduced to a scalar partial differential equation of the
same form as (3). In order to satisfy the boundary conditions at the shell surface
£ =a, lhe trigonometric functions which appear in the solution, must be of the same
varialion as for the exciting field. Therefore, the potentlial of the distributed field can

be written in the form of the following Fourier integral:

4, =i, J-D(m)Kl(ma)I,(mp)cos{m[z-fv(r)]}dm for0<p=<e (8 a)
a
A,, = i, J-D(m)ll(ma)K,(mp)cos{m[z-.fv(l)]}dm foras<psw (8 b)

D¢m) is an unknown function to be determined from the boundary conditions at the
shell surface g =a. The form given in (B), already fulfilis the continuity condition at
the shell surface.

A refationship between the potential of the distributed field 4 and the induced
surface currents K is obtained, by applying Ampere’s law {(5) at the shell surface.
Remembering that, the potential 4 is continuous when passing through the interface
£ =a. the condition given below, holds

A, o

e,/

P1=ué K for p= 9
2 6p] i€ K, p=a (9)

In order to satisfy the boundary condition at the shell surface, the surface current

density X, is expressed as a Fourier integral
Xa(z.f)=jk(m)co:{m[z—!v(r)]}dm (10)
o

tnserting expressions {8) and (10} in (9), yields the result: Dim) = ak(m)
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Applying Faraday's law {2) at the shell surface, results in the following linear

differential equation:

ﬂ-ﬂme_:—% with «a, = 1 ! (11)
dt ct Hoha 1{ma)K (maj

and  P,(z.4)=D(m) cos{m[z-1v(1)]]

EKl{mb)

A)=1
Oalz.t) ‘x K (ma)

cosfmfz—itvlt}]]

The solution of the differential equation {11) is obtained by Laplace transformation

and the result is given below as a convolution integral:

;de" fz1—t

Plzt)=- " )erp(—amf’)df’ (12)

™
0

If the function @, rz,¢) for ¢ 0 is not constant, that means, the current lcop moves

also in the range z <0, then the upper limit in the convoiution integral is equal inlinity

For a given predefined motion of the current loop, which is characterized by

the velocity funclion v(1;, the required surface current density X_ is then determined
by:

b 171K (mb)

"ax K (ma)

K (zt)=-1 JSim, 2t jdm (13)

with  ffm.z,t)= j—;;[c‘os{n:[z ==t )vfr =" )]} ] expi—a, bt )dt’
1]

The surface current densily X as determined in (13) is valid for any time-variable
motion of the current loop v(¢). To be more specific, two cases are treated in the

next section explicitly: the uniform and the accelerated molion.

4.1 The uniform motion of the current loop
In this case, the current lcop moves with constant velocity v, from z=-w to
z=o.The upper limit in the convoiution integral (13) becomes infinity so that, the

integral can be evaluated in closed form. The surface current density K, with the

reference surface current X, = 1, /27za is then determined by:
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Kfz4) bK (mb)
" 22 J’K( )_)'],(mzr)d(ma) (14)
With o my 1) = (o) 08Iz = w01 (orvy )t sinlm(z — vy

(mv,)’ +a,’ (mv,) +a,}!

A plot of surface current density with k = y,0 hv, as a parameter is shown in

figure(2). It can be seen that the surface current density is an odd symmetric function
of the moving coordinate (z—v,¢) for relatively small values of the parameter k, which

represents small velocities. As the values of k increase, the zero crossing of the

funclion moves to the left in the region where (z —v,7){0 and the odd symmelry of

the function is distorted. Hence, the extreme value of the function in the region
(z—v,1))0 becomes greater than in region (z-v,£){0, such that for k -« the
surface current density function becomes symmetric about the origin. At very high
velocities where (he term a,, /mv, <<1 , the surface current density reduces to:
M _ok IK (mb)
K, K,(ma

A plot of this function is shown in figure (3).

cos{m(z — vyt )]d{ma) {15}

e
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Fig. {2): The surface cument density K, /K, along the cylindrical shell
versus the moving coordinate {z - v, r)/a with k = yohv, as a
dimension-less parameter for 5/a =2
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Fig.(3): The surface current density X /X, al ng the cylindrical shell
versus the moving point {z —v,7)fa at k= for bfa=2

4.2 The accelerated motion
The accelerated motion to be considered is the motion of the current loop when it

moves with a time-variable velocity v(1)in the form of a finite ramp function. The
current loop moves first with a constant acceleration aft)=a, = v, /1, during the time

interval 0 <1 <, then uniformly to infinity with velocity v, , figure (4).

v(e)

s
Otf/ :0 3

Fig {4). velocity vanation as a
fintte ramp functicn

Therefore. the surface current density X possesses two components; first K; due
to the accelerated motion, and second X due to the uniform motion. The two

components are then calculailed separately.
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During lhe accelerated motion in the time interval 0 <</, the loop moves a

distance =z, =v,1%/2r,, so that the coordinate z’'=z-z =z-v,r’/2,, and the

v

integration is performed from zero to ¢. The first component of the surface current

density is then determined by:

K, (z L) _IK(mb)f,(m,z.f)d(ma) for 0<r<t, (16)

with  f(m,z, r)- )" Ism{m[z———-*(f Y=t Jexp(—a, t’)dt’

lJ

In the time interval ¢ 2 1,, the second component K consists of two parts; the first
comes from the accelerated motien with integration limits from ¢r-1,) to 1 the

second from the unifoerm metion with integration limits from zere to (1 -1, ).

[Amz)+ fifmzt )} dima) fore2e, (17}

K”(Z 1) P J-K(mb)

with j}(m,z.l)— (mv) I‘""{M{Z_E (=P J)t—1 Jexp(~a t' )dr'

) =iy

=iy

and fifmzt)=(mv;) Isin{m[z—vn(f—rn ~t')}expl—a ' )dt’
1]

The inner integral in the second part of the solution can be evaluated in closed form,

and the result is given below:
{mv,) Isin{m{z ~v{t—1, =) Jexp(—a 1’ )dt' =

(mvo) cos{mfz—v,(i—1, )j}+(mvo)a sin{m{z—vo(t—t,)}} _ (18)
(mvn) +ta,

{mvi,)cos(mz)+a .sm(mz) expf-a (i1, )]
H 0

(’""n) +a,

For ¢ >>1, all the temms in (17) that contain the exponential function expf-a_r1-t, )}
approach zero and only one term remains, that is the first term in (18), so that
expression (17) reduces to {14) for the uniform motion, whereby the correctness of

the results obtained is verified.
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Figure {5) shows the surface current density versus the coordinate z with time

as a parameter.

4.3 The arbitrary motion of the loop

To determine the induced surface currents on a cylindrical shell due to an arbitrary
transient motion, it is convenient to use the superposilion integral (DUHAMEL) {10].
This super position integral states that; in a tinear system if the characteristic output

time response function y,(1) due fo an input unit step function ufr) is aiready
known, then the output response function y ¢¢; due lo an arbitrary input function

x(t} is determined by

v, (1) =50, (1) + [£10

0

-y (t-r)dr (19)

For the present case, the response function due to a step function can easily be

obtained from the results of the previous section. By letting the time interval 1, of the

finite ramp function approaches zero, it can be seen easily that the finite ramp

function becomes a step function of the form vt} =v, -uft) and from equation (17}

the respense function will take the form:

K.H'
'(" " %IKﬂf,(m.z.!)d(ma) ;120 (20)

(mvy )* cos{m{z = vyt )] +(mvy Ja, sin{m(z-vot)]
(mv, )} +al

fitmzt)=

with
_ { mv, Jcos(mz }+a, sin{mz }

1 1
(mv, )" +a_

exp{-a,t)

For an arbitrary motlion of the current loop with the normalized wvelocity function

v(i}/ vy, the induced surface current density will be

Ko(=4) vy K;’(z,f)+'Ldv(r) Kl(z1-7)
K v, X, v, drt K,

L] )

dr (21)

Since the formal general solution (21) of the problem does not add much to the cases
already treated in the previous sections, further study of the problem will not be

continued.
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Fig.(5): The surface current density K /X, versus the coordinate z/a with
time +/¢, as parameter during the accelerated motion for (v,f, /a) =1,
k=uchy,=1 and bfa=2

5. The force acting on the moving current loop

In general, the force F acting on a current loop of impressed current i, and

circumference C situated in an external magnetic field of flux density B is delermined

by the following line integral

F=1,{dexB 22)
]

where d? is a tangent vector on the current loop oriented toward the positive

direction of the current. The magnetic flux density B is that of the distributed field and
is obtained from the expressions (8b) and (11). Since the distributed field is
rotationally symmetric and the current loop is placed coaxial with the cylindrical shell,
it is cbvious that the force acting on the moving current loop is a drag force and has
only one effective component in the z-direction. After performing the required contou
integration (22}, one oblains for the z-component of the force the general expression:
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!, (ma)

F. = 2u, 120" IK( )x 2 b)—f(m D ey At (23)

fim,z,0) = Iexp(—a, r);%coslm[z —{t =)t -1 }ar
4}

where z_{/} is position of the moving current loop at the observation time 1.

For the special case of a uniform motion with constant velocity v, . we obtain with the

reference value £, = /¢ the result:

mv,
: )
£__ _biq fi(ma) ;s a,
£ Za, JKl(ma) Ky tmb)may LY dlma)  (28)

A plot of the force function (24) is shown in Fig.(6). It is observed that the force acting
on the moving current loop is a drag force which increases linearly for small values of
k. The force function reaches an exireme value at ¥ =3.5 then it decreases
maonotonously,

For the case of an accelerated motion, we obtain in the time-interval 0 </ <1, the

expression:
f;' = ﬁf}I hma) K.’(mb)(m)’ g (m.1)d(ma) {25)

!

. ot r Vi, & 180 r
h n=fit--L _ I eost Yoloyee d 10 00l
with g,(m,1) E,I(r., Q}EXP[ (ﬂ.fo}fo Jeos{(ma)( ” )[(fn 2r0)r0]}d(ro)

A plot of this function is shown in Fig.(7}). The force function of the transient motion

during the time interval 0 <t <, is an increasing function of time, which then remains

constant in the time interval ¢ 2 ¢, where the acceleration becomes zero.
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Fig.(6}: The force function F,/F, versus the parameter k = y,0 hv,
for the uniform motion with constant velocity for bfa = 2

ot 1_,‘11 —

Fig.(7): The force function F,/F, versus the time /1,
during the accelerated motion with & = u,chv,
as parameter for (vt /a}=1, and bja =2

6. Conclusion

Analysis of the interesting aspects in the study of eddy currents in a cylindrical shell
has been developed. The analysis began with a constant velocity motion of a
concentric current loop which was then extended to an accelerated motion Eddy
currents resulting from the relalive motion were expressed as Fourier and convolution

integrals which lent themselves readily to computational techniques. Plots of lhe
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induced surface currenl density for both constant and accelerated molion were
demonstrated. An extension of the problem to an arbitrary moticn of the current loop
was also given. The force acting on the moving current loop is also caiculated and

the resuits are presented in a graphical form
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