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Abstract: The topic of the article is inference about parameters of the inverse power 

Ishita distribution (IPID) using progressively type-II censored (Prog -II- C) samples. 

For the IPID parameters, maximum likelihood and Bayesian estimates are obtained. In 

addition, Bayesian estimates for symmetric and asymmetric loss functions like squared 

error loss and LINEX loss functions are provided. The Gibbs within Metropolis–

Hasting samplers process is used to provide Using the Markov Chain Monte Carlo 

technique, Bayes estimates of unknown parameters and its credible intervals (CRIs) are 

obtained. At last, an application of the proposed approaches is considered a real-life 

data set, data set represents uncensored strengths of glass fibers data to assess the 

accuracy of the proposed estimators. 

keywords: Inverse power Ishita distribution; progressive Type-II censoring; maximum likelihood 

estimation; Bayesian estimation; Gibbs and Metropolis–Hasting samplers; loss function. 

1.Introduction 

In the field of industrial and mechanical 

engineering, statisticians have spent a lot of 

effort investigating the failure of components 

and units, which are the fundamental 

components of operational systems. Their 

research includes observing functioning units 

until they fail, recording their lifetimes. There 

are several sorts of censoring schemes, 

including right, left, interval censoring, single 

or multiple censoring, and Type-I or type-II 

censoring, however traditional Type-I and type-

II censoring methods do not allow units to be 

removed at any point other than the 

experiment’s end. The hybrid censoring system, 

which was first presented by Epstein [1] Since 

it a combination of Type-I and Type-II 

techniques, we consider a more general 

censoring scheme called progressive type-II 

censoring scheme here. The progressively 

hybrid censoring scheme, which was 

introduced by Kundu and Joarder [2], has a 

favorable position in the reliability and life-

testing over the last few years. The progressive 

type-II censoring system can also be proven as 

follows: on the life test, the tester assigns 

independent and identical units. The lifetime 

test is ended at the failure time of the 

            unit, assuming there are   units 

to be tested at the start of the experiment. After 

the first failure, time    is recorded, and    

units are selected at random from the remaining 

  –    survival units. As a result, when the 

second failure occurs, time     is recorded, and 

    units are randomly selected from the 

remaining            survival units. This 

experiment ends when the     failure occurs, 

which is known ahead of time, at time   , and 

           ∑   
   
     see Figure 1. As 

special cases. (if      and               

with      ) and the conventional type-II right 

censoring 

scheme if (       and                 

with        ). Progressive type-II 

censoring scheme has been espoused by alot of 

authors with different breakdowns of failure 

time. For example, Balakrishnan and 

Aggarwala [3], Alshenawy [4], Balakrishnan 

[5], Ahmed [6] and Almetwally et al. [7]. Mann 

et al. [8], Lawless [9] and Meeker and Escobar 

[10] studied into the properties of progressively 

censored order statistics and gave a review with 
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different advances in inductive processes 

depend on progressive Type-I and Type-II right 

censored samples, as well as identifying some 

interesting possible research topics. 

Balakrishnan and Cramer [11] provide a 

thorough survey of the literature on progressive 

censoring, as well as specifics on this 

progressive censoring technique and its various 

uses. The number of patients who leave a 

clinical test at every step, for example, is 

random and cannot be predicted, according to 

Tse et al. [12]. The removal pattern becomes 

increasingly random with each failure. See 

Balakrishnan and Sandhu [13] for further 

details on the gradually censored samples. 

Weibull, lognormal, or exponential lifetime 

distributions are used. Aggarwala and 

Balakrishnan [14] has studied inference for 

progressive type-II censored cases. 

Balakrishnan and Sandhu [13] and Aggarwala 

and Balakrishnan [14] a method for replicating 

generic progressive type-II censored samples 

taken from uniform or other continuous 

distributions Montanari et al. [15], as well as 

Eryilmaz and Bairamov [9], have investigated 

the parameters estimator of various lifetime 

distributions using progressive type-II 

censoring. Also, Balakrishnan and Kannan 

[11], Mousa and Jaheen [16]- [17], Mousa and 

Al-sagheer [18]. In right censored order 

statistics of progressive type-II, Salemi et al. 

[19] recently investigated A-optimal and D-

optimal censoring strategies, Qin et al. [20] 

offer a novel spacing-based test statistic for 

determining whether When Maiti and Kayal 

[21] had access to a controlled step-wise 

sample of the second type, they used general 

progressive type-II censored data from an 

exponential distribution and parameters from a 

log-logistic distribution under the progressive 

type-II censored sample. when a controlled 

step-wise sample of the second type was 

accessible. The IPID is a generalized of the 

Ishita distribution, which was presented by 

Elnagar et al. 2022 [30] is thought to be a good 

model for the covid's-19 and glass fiber data 

failure times. Using complete data, they also 

examined the maximum likelihood estimators 

of the unknown parameters, and also their 

asymptotic confidence intervals.  

Shanker and Shukla [22] introduced one 

parameter lifetime distribution depend on a 

two- component mixture of an exponential 

distribution having scale parameter   and a 

gamma distribution having shape parameter 

  and scale parameter   with their mixing 

proportion, the probability density function 

(pdf) of Ishita distribution with scale parameter 

  is given by 

     
  

    
            

              (1) 

and the cumulative distribution function 

(cdf) is given by 

       [  
        

    
]       

       .     (2) 

We applied the inverse power 

transformation to Ishit distribution getting the 

Inverse Power Ishita distribution, the random 

variable (rv)   is follow IPID, if its probability 

density function (PDF) is 

     
 

    
                    

  

              (3) 

and its cumulative distribution function 

(CDF) is 

     [  
            

    
]        

  

            (4) 

Let                                   
   be a result of a progressively type-II 

censored sample lifetime test that included   

units taken from a IPI       distribution and 

the censoring scheme is             . 

Balakrishnan and Aggarwala [3] gives the 

joint PDF of a progressive type-II 

                            

   ∏ (          ) [ 

 

   

  (          )]
  
        

(5) 

Where                         
∑          

    . 

The great review essay by Balakrishnan [5] 

provides a recent report on progressive 

censoring schemes. The remainder of the paper 

is organized as follows: MLEs of and are 
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obtained in Section 2. In Section 3 investigate 

the confidence intervals for the unknown 

parameters. For various loss functions, such as 

the SEL and LINEX loss functions, Bayes 

estimates for unknown parameters were 

introduced in Section 4. In Section 5, a real data 

set was studied. Finally, in section 6, the 

research was conducted. 

2. Maximum-Likelihood Estimation 

We look at the problem of estimating IPID 

parameters in progressive type-II censored data 

using the maximum likelihood estimation 

method (MLEs).Let                         be 

a progressive type-II censored sample from the 

IPI distribution with PDF Eq. (1) and 

parameters   and  . The likelihood function 

has the following 

      

  
     

       
   ∑   

   
   ∏[  

 

   

   
      

    ]∏[ 

 

   

 [  
   

      
     

    
]      

  
]

  

     

On progressively type-II censored samples, 

the log likelihood function of the parameters   

and   is obtained as 

                          
           ∑   

   
    ∑       

   

  
          ∑     

 
    ∑   

 
     *  

*  
   

  (   
    )

    
+      

  
+.     (7) 

The first partial derivatives of Eq. (7) with 

respect to   and   are calculated and solving 

this nonlinear system of equations 
 

  
            

 and 
 

  
          , the maximum 

likelihood estimates ( ̂ and  ̂) are obtained. 

Accordingly, results in 

 

 
 ∑    

         

 

   

 ∑  
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and 
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    (9) 

since Eqs. (8-9) cannot be solved 

analytically, so to obtain the estimations, a 

numerical method like Newton-Raphson 

method should be employed. In Ahmed [6], the 

algorithm is given in detail. 

3. Asymptotic confidence intervals 

The entries of the Fisher information 

matrix's inverse give us the approximate 

variances and covariance’s of the MLEs,  ̂ and 

 ̂;        [ [             ]]  

where         and              
        Unfortunately, precise asymptotic 

forms for these equations are difficult to get. 

The Fisher information matrix  ̂    

 [              ]   ̂ is then used, we will 

utilize the expectation to determine the 

parameters' confidence intervals (CIs), which is 

obtained through inference. Consequently, the 

observed information matrix is 

 ̂( ̂  ̂)  

[
 
 
 
    

   

    

     
    

     

    

   ]
 
 
 

(   ̂    ̂)

      

As a result, the asymptotic variance-

covariance matrix  ̂ for MLEs is derived by 

converting the observed information matrix 

 ̂      or similar to the asymptotic variance-

covariance matrix 

 ̂   ̂   [
      ̂         

              ̂
]
( ̂  ̂)

        

It is evident that   ̂   ̂  is approximately 

distributed as multivariate normal with mean 

      and covariance matrix          given 

specific symmetry requirements, see 

Bebbington et al. [23]. As a result, the     
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         convergent confidence intervals 

(ACIs) for   and   may be calculated as 

follows: 

 ̂    

 

√      ̂   ̂    

 

√      ̂          

where      

 
is the right-tail probability 

percentile standard normal distribution 

for  
 

 
  see Lawless [24]. 

4. Bayes Estimation 

The Bayesian process treats the parameters 

as random variables, and the distributions for 

these random variables are illustrated by a joint 

prior distribution, which is established before 

control the failure data, according to Zellner 

[25] discussed Bayesian estimation. The 

Bayesian procedure regards the parameters as 

random variables and the distributions for these 

random variables are illustrated by a joint prior 

distribution, which is created before control the 

failure data. Because of the reduction of given 

data in reliability analysis in the most practical 

conditions, the Bayesian approach will supply 

successfully in these conditions, let the prior 

knowledge in the analysis of the failure data. 

The SEL and LINEX loss functions, as well as 

Bayesian estimations of the unknown 

parameters   and  . The independent  

parameters   and   have  the following gamma 

prior distributions 

                                            

                                    

wherever all the hyper parameters    and 

           are assumed to be non-negative 

and known. The posterior distribution is 

derived from the likelihood function Eq. (4) 

and the prior distribution Eq. (13), and with the 

posterior distribution of   and   denoted by 

          

         

 
                  

∫ ∫         
 

 

 

 
              

      

4.1. Loss Function 

We need to design an asymmetric loss 

function to make statistical Bayesian inference 

more practical and relevant. The loss function, 

as defined by Press and James [26], is a real-

valued function that satisfies all feasible 

estimates and parameters. We must adopt an 

asymmetric loss function for the purpose of 

obtain statistical Bayesian inference extra 

sensible and relevant. According to Press and 

James [29], the loss function is a real valued 

function that satisfy all possible estimations and 

parameters.  

4.1.1. Squared Error Loss Function 

The square error loss function is defined in 

estimation problems as: 

 (    ̂)   (  ̂     )
 
         

Then, for any function of   and  , the Bayes 

estimate is        under the SEL function 

given as follows 

 ̂                                       

where 

       (      )

 
∫ ∫       

 

 

 

 
                      

∫ ∫                       
 

 

 

 

      

4.1.2. Linear Exponential (LINEX) Loss 

Function 

The LINEX loss function      for a 

parameter   is proposed via  Varian and Hal 

[27] as: 

                             
  ̂                 

hence the bayes estimate of a function 

       under LINEX loss function  given by 

 ̂             
 

 
   [ (           )]  

        

 (        )

 
∫ ∫          

 

 

 
                      

∫ ∫                       
 

 

 

 

        

It's important noting that the ratio of 

multiple integrals in Eqs. (15) and (16) cannot 

be expressed explicitly. To produce samples 

from the joint posterior density function in Eq. 

(14), the MCMC approach is used. We use the 

Gibbs within Metropolis–Hasting samplers 

process to implement the MCMC technique. 

The joint 

posterior distribution may could be 

expressed according to  
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The conditional posterior densities of   and 

  may could be  represented according to  
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]      

  
]

  

      

Because the conditional posteriors of   and 

  in the previous equations do not qualify for a 

specified distribution, the Metropolis–Hasting 

sampler must be used to apply the MCMC 

approach. Tierney and Luke [28] proposed the 

Metropolis–Hastings algorithm within Gibbs 

sampling, which generates the posterior 

samples as: 

1.Begin with an educated guess of              

Set    . 

2.Calculate      and      from Eqs. (18) and 

(23) by using M-H technique described below, 

with the normal indicated distribution 

               and               , where 

The main diagonal of the inverse Fisher 

information matrix can be used to calculate  

       and       . 

a)Create     proposal from                 
and    from                . 

b)Calculate the probability of acceptance  

       [  
  

 ( 
 |      )

  
 (    |      )

]  

and         [  
  

 ( 
 |    )

  
 (    |    )

]              

c) Generate a    and    from a Uniform (0, 1) 

distribution. 

d)If        , accept the proposition and set 

       else set         . 

e)If        , accept the proposition and set 

       else set         . 

Calculate    and    . 

Set      . 

Repeat Steps 3-6 N times. 

To evaluate the CRIs of   and   of 

  
                    and 

                as   
    

  

    
 , then the             

CRIs of    is ̂   
 

   
∑    

       

And       ̂   
 

   
∑    

       

And the estimates for the 

mentioned parameters under LINEX 

loss function are: 

    
  

 
   [

 

   
∑      

 

     

]  

and 

    
  

 
   [

 

   
∑      

 

     

]  

5. Application of Real-life data 

In this section real data set is analyzed. The 

data appeared in the work introduced by 

Mahmoud and Mandouh [29] uncensored 

strengths of glass fibers data. The considered 

glass fibers data uncensored strengths of glass 

fibers data. A progressively type II censored 

sample of size        simulated randomly 

from the sample of size        with censoring 

scheme                       .  
We use data appeared in the work introduced 

by Mahmoud and Mandouh [29] strengths of 

glass fibers data: 1.014, 1.081, 1.082, 1.185, 

1.223, 1.248, 1.267, 1.271, 1.272, 1.275, 1.276, 

1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 

1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.46, 

1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 
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1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 

1.602, 1.666, 1.67, 1.684, 1.691, 1.704, 1.731, 

1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 

1.876, 1.878, 1.91, 1.916, 1.972, 2.012, 2.456, 

2.592, 3.197, and 4.121. 

The inverse power Ishita (IPID) is fitted the 

data set by using the method of maximum 

likelihood and the outcomes are compared with 

the other competitive models namely Inverse 

Power Sujatha (IPS), Ishita (I), Sujatha (S), 

Lindely (L) and Exponential distributions 

respectively. Next, some criteria like the 

Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and Consistent 

Akaike information criterion (CAIC), −2 ln(L) 

Kolmogorov-Samirnov Statistics (K-S), the 

Cramer-von Mises     , Anderson-Darling  

     and P-value statistics are used to verify 

which of the aforementioned distributions fits 

the research data better. The formula for 

computing the vales of AIC, BIC and CAIC are 

respectively provided by 

           
                and 

     
   

     
     

where   denotes the log-likelihood function 

evaluated at the maximum likelihood estimates, 

  is the number of model parameters and   is 

the sample size. 

 
Table 1: Estimates of model parameter with 

standard errors and corresponding values of 

model selection criteria for the distributions 

fitted to glass fiber data. 

Tables 1, show that the present results by 

(IPID) have the least values for (AIC), (BIC), 

(CAIC           Kolmogorov-Samirnov 

Statistics (K-S),     , (  ) and the highest 

value for  P-value statistics  indicating the best 

fit for the data. 

Progressively Type-II failure data presented in 

Table 2 have the MLEs parameters  ̂ and  ̂ 

giving in Table 3. For different values of the 

shape parameter c of the LINEX loss function 

for the parameters   and , Bayes estimates 

respect to both SEL and LINEX functions are 

produced which indicated in Table 4 and 

showed that Bayesian methods have good 

performance, The     ACIs and CRIs for the 

parameters   and   are computed. It is well 

known that LINEX loss function becomes 

symmetric for c tending to zero. From Table 

(3), the results of SEL and LINEX loss 

function, at           , are the same. This 

indicates that the recommended approaches are 

accurate. Figures 1, 2   display diagrams for 

simulation numbers of the parameters   and   

for glass fibers data, and they confirm a good 

mixing performance. 

 

Table 2: The Progressively Type-II failure 

glass fibers data. 

 

   0.92 0.928 0.997 0.9971 

   5 5 0 0 

   1.061 1.117 1.162 1.183 

   0 0 0 0 

   1.187 1.192 1.196 1.213 

   0 0 0 0 

   1.215 1.2199 1.22 1.224 

   0 0 0 0 

   1.225 1.228 1.237 1.24 

   0 0 0 0 

 

Table 3: Point estimates for the parameters 

     glass fibers data. 

 

Parame

ter 
MLE SEL 

LINEX 

  

    

  

   

  

        

α                                       

θ                                      

 

Table 4:     ACIs and CRI   and   glass 

fibers data. 

 
Parameter MLE MCMC 

α                                   

θ                                    

Distributi

on
K-S P-Value -2ln(L) AIC BIC CAIC

IPI 0.07683 0.85105 20.0346 44.0693 48.3556 0.06972 0.53051 44.2693

IPS 0.07726 0.84625 20.0856 44.1713 48.4576 0.07064 0.5383 44.3713

173.017

Exponent

ial
0.47214 1.26787 93.2229 188.446 190.589 1.00794 18.2276 188.511

14.4846 164.895

Lindely 0.43474 9.09346 85.4759 172.952 175.095 1.00794 15.8556

1.00794 14.6483 177.32

Sujatha 0.40959 1.32028 81.4149 166.973 164.895 1.00794

Ishita 0.39886 3.93895 87.6274 177.255 179.398
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Fig1: Simulation numbers of the parameter α 

for glass fibers data. 

Fig 2: Simulation numbers of the parameter θ 

for glass fibers data. 

 

6. conclusion 

 In this study, we discuss an iterative 

technique for deriving MLEs from an inverse 

power Ishita lifetime distribution using 

progressively Type-II censored samples. 

Another estimation approach, based on Bayes 

estimates, is also considered. The Bayes 

estimates were produced using loss functions; 

however, they are not available in explicit form. 

We propose that the Bayes estimators and 

associated IPID credible intervals be computed 

using the MCMC technique. We derive the 

posterior summaries of interest, such as 

credible intervals for the parameters, in a 

simple way using typical MCMC simulation 

methods for a Bayesian analysis of the model. 

The findings of this study can be used to the 

estimate problem of the IPI distribution using 

complete data, which are usually type-II 

censoring samples. The proposed methods are 

demonstrated with numerical example. 
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