Menofia University

Faculty of Engineering

Department of Mech. Power Eng.

Postgraduate Diploma

Subject: MPE 519 Gas Turbines

Date: 19/8/2020

Time: From 10 to 13

Total marks: 100

Answer the following questions with assuming any missing data

Question 1

a) Define: thermal efficiency, propulsive efficiency, regenerator loading coefficient, back work ratio

25 marks
effectiveness,
5 marks

b) Prove that; for an axial compressor stage, the degree of reaction R can be calculated from the following equation;

$$R = \frac{1}{2}\phi(\tan\beta_1 + \tan\beta_2)$$

Where β_1 and β_2 are the inlet and exit flow angle

 Φ is flow coefficient.

8 marks

c) Explain what is the effect of high inlet temperature on specific power output, specific thrust, plant and turbine stage efficiencies?

5 marks

d) Draw velocity triangles at the entry and exit for an axial compressor stages with following degree of reaction:

$$R=\frac{1}{2}, \qquad R=1$$

7 marks

Question 2

25 marks

a) What are the most important properties which the high temperature blade material must have?

5 marks

b) Describe various methods of cooling gas turbine blades? 5 marks

c) Starting from the fundamental equations of heat transfer, prove that the variation of the coolant and blade metal temperature along the blade height are given by

$$\frac{T_C - T_{ch}}{T_q - T_{ch}} = 1 - e^{-C_1 z}$$

Where Tg is the gas temperature

T_c is the coolant temperature

T_{ch} is the coolant temperature at hub

Z is the blade height

5 marks

d) A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 83.7 m³/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1140 K, and its isentropic efficiency is 85%. The turbine exit pressure is 50 kPa. Flow through the diffuser and nozzle is isentropic. Using an air-standard analysis, determine

i- The power delivered to the propeller, in MW.

ii- The nozzle exit area, in m².

Neglect kinetic energy except at the diffuser inlet and the nozzle exit. 10 marks

Question: 3 25 marks

a) What is stalling in axial flow compressors? How is it developed? Describe briefly.

5 marks

- b) An axial compressor stage has a mean diameter of 60 cm and runs at 15000 rpm. If the actual temperature rise and pressure ratio developed are 30°C and 1.4 respectively, determine::
 - i- The power required to derive the compressor while delivering 57 kg/s of air, assume mechanical efficiency of 86% and an initial temperature of 35°C.
 - ii- The stage loading coefficient,
 - iii- The stage efficiency, and
 - iv- The degree of reaction if the temperature at the rotor exit is 55°C. 20 marks

Question: 4 25 marks

- a) What are the various methods employed for improving the efficiency and output of a constant pressure gas turbine plant?

 5 marks
- b) A gas turbine power plant has an output of 100 MW at the generator terminals. Its data is given below:

Air compressor inlet pressure and temperature $p_1 = 1.013$ bar, $T_1 = 310$ K

Compressor pressure ratio = 8.0, efficiency $\eta_c = 0.85$,

Turbine inlet temperature =1350 K, efficiency $\eta_t = 0.9$

Turbine inlet pressure = 098 x compressor exit pressure

Turbine exit pressure =1.02 bar.

Calorific value of the fuel, Q_f =40 MJ/kg

Combustion efficiency, $\eta_B = 0.98$,

Mechanical efficiency, $\eta_m = 0.97$,

Generator efficiency, $\eta_G = 0.98$

Take $\gamma = 1.33$, R = 0.287 kJ/kg K for the gas.

Determine:

- i- Gas flow rate,
- ii- Fuel-air ratio.
- iii- Air flow rate,
- iv- Thermal efficiency of the power plant, and
- v- Overall efficiency

20 marks

With our best wishes