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homogeneous soll with an impervious barrier, The numerical solution
requlres a very long computational ¢time and a large storage capaclty
of the computer; in addition the problems of “stabillty and converg-
ence shoud be considerd., Moreover the Gauss principle of least constr-
aint was used as an appropriate direct method For solving the llnear
and non-lilnear heat conduction prablems [61.

The abjective of the present study is to apply the Gauss principle
of least constralnt to the |Infl{ltration €from seml-circular furrovs
and burled plpes lnto unsaturated so0ils and to compare the results
with those obtained by the ADI method.

GAUSS PRINCIPLE

Gausgss princliple of least constralnt ls a true mlinimum prlincliple
applied In classical mechanles. It could be used to treat the non-
linear Qdiffusion equation which qoverns the two-dlmensional flow of
vater in unsaturated saolls

3(8) 3k (8)
— = | ¢1v (D(®) grad 8) = —m ] i (1)
At oz
vhere; 0 is the volumetric moisture conten5 lan/cm3),

D{8) 1s the s0ll wvater dAlffuslvity (cm“/mln),
k{8) 13 the caplllary conductlvity (em/wln),

t I1s the tlme,
Equaclion (l}' could be revritten as
08 ? Y ) 38 3k (@)
—_— - ( D(8) —— 1 + ( Dtoe) 1 - - =0 ....(1)
At dx Bdx 9z dz 3z
vhere; x la the horizontal coordinate (cm),
z Is the vertlcal coordinate (postive downvards), (cm).

The Aalffu3slon analog of Gauss princlple expresslon {6] can be
vritten as follovs:

s-=[re-a1?ay, (2)
v

v is the volume engaged 1ln the process of dlffusion,
P = d8/3¢t,

Q = div(D(8) grad ) - Jk(B)/d=%;

P and Q are the temporal and spatial parts respectlvely.

Let us seek a solutlon of equatlon (l) whlch belongs to a famlly
of fuactlons with one or moxe unknowvn parameters. In each parxtlcular
case the characterlstlc complex of the parameters, wvhlch represents
P or Q must be identi!fled and a mlnlmlzatlon of the constraint G has
to be performed wlth respect to one of these complexes. So the problem
reduces to the algebralc minlmlzatlon of a polynomlal wlth respect to
some complex of physical parameters.

ln the following study the Gauss prlinciple 1s applled to the
lnfllcration from seml-clrculax furrowa and from burled plpes.

wvhere
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1. THE INFILIRATION FROM EQUALLY
SPACED SEMI-CIRCULAR FURRQWZ

Figqure (1) showvs the flow medium which 18 a homogeneous soll
underlain by a horizontal impervious barrler at some depth Z from the
s0il sBurface. The water source 1ls a eet of semicirculay furrows of
radlus R 8paced at reqular intervale 2X., Due to the symmatry of the
Eystem, the s0l1l medium can be dlvlded into rectangular slabs and
confine the solution to one aingle slab, e.g9. ABCDE, slnce there I8
no tlow from pne slab to the other. The orlgln of the rectangular
system of coordi{nates x and 2 ls placed at the centre of the furrow.

e X -~
] .L L)Y 0! ‘]
9 [ e Y 4
[ \ G/ .
‘ | |
| |
: J—
! Synwetry , Jywmacrty qz
J r_l'“.._ I lincc—} z
_ : i ‘
),y ——C ~~ Wetting front
Flg.ll) Schematic dlagram of 3
homogeneous soll lrrigated .
by 3 set of semi-clrcular 1
furrovs equally spaced at
dlstances of 2X. Fig.(2) Schematlc dlagram of

the wetting front In
the case of the furrowv.

A constant low vatet content @; throughout the flov medlum s
considered as the inltial condltlon:

0 < x £ X
g =8, , x" &2 >R, , £t =0. (3}
10 sz s %
The boundary condltlons are:

1- Along the furrow surface AE, the water content i alwvays maintainedq
at saturation eg4 :

8 = ug for x’ + 22 = R2 ' t 2 0. {4}
2- There 1s no horizontal flov across the vertical lines of symmetry
AB and CD
de x=0 H<«<z <1
— - = 0 for , b 2 0. (5)
dx x > X 0D sz < 2

3- There 138 no vertical flov across the 20ll surface ED and the
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impervious barrler BC:

G Il 2=0, R<X X
+ k(9) =0 for , £ 2 0.
z z =12, 0 s x s X

~ b(e)
(6)
HETHOD OF JQLUTION
To obtaln an approximate trial solutlon, the caplllary term
in equatlion (1) 1s neglected so that the resulting equation, lIn
polar coordinates, becomes
de 1 3 EY:)

{ £ D(®B)
dc r dr or

). (7)

Using Boltzmann transformation o = r t™, then equation (7) can
be reduced to the ordinary differential equatlon

® de 1 d de
- = ( ¢ D(B) | JE (8)
2 de @ de de
Regarding experimental results the general form of D(8) Is found
to be (5] Aq8
D(B) = Ay e , (9)

vhere A] and A, are known constants.

Substituting equation (B8) into equation (9) and neglecting the
terms of less velght, then

» A0 de
= AL hz e (
2 de

). (10)

The LIntegratlon of this equatlon gives

1 c ®2
inl — - 1, (11)

Ap Ay 4A;,

wvhere C |s the lntegratlon constant.

Equation (ll1) B8hows that the advance of the wetting front l\s
the same in both dlrectlons due to the drop of the gravity lnfluence.
Actually <dlfferent advances should occur ln both directifons so that
the trlal function (11) may be modlfled to have the torm

2 2
X z
8 2Cy, +C  In[ 1-Cy ( + 7 ) 1, (12)

2
q1 q2

where the constants Cp, ,C| and C, and the functlons of time qy and
q, are unknowns to be determlned. The functlons q, and q, represent

the penetratlion depths of the wettlng front in the horlzontal and
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vertical dlrections respectlively, Fiqure (2).

The trtal function (12) falls to satisfy the boundary condltlions
{4) and (&) so that gsome modlflcatlons are necessary. Nevertheleas 3
varlatlon of the trlal function results in very complicated integrals,
Hence,the boundary condltlons should be approximated to eult the trlal
function., The boundary condlitlons can be approximated asg Eollows

1~ 8=85g ; X =12 =0 ; 20
9y =92 =R ; t =0. - (13
2- (d8/3x) =0 ; x=0 ; R<z<q) . (14}
3- (d8/0z) = 0 ; z a O ; R <x £ g1 - (15)
x2 z2
1- o8 = s, ; 7t 7 = l . (16)
q1 92

The substitutlon of the boundary condltlon (13) (n the trlal
functlion (12) qlves C, = 8g5. Hence the trlal functlon becomes

2 2
x z

g9 = eS + Cl ln { 1 - Cz ( ) 1 (17)

2
91 92

Uslng the trlal functlon (17), the Inteqral of the rlght-hand
slde of equatlon (2) can be evaluated knowlng that the gencral form of
k(e) ls [5]

248 - Ago?2
k(@) = A3 e 4 s ’
vhere A3, A4 and Ag are kncwn constants.
From the partlal derlvatlve (36/dt), the temporal complex

v = dl/ql and wy = &2/Q2_ {18)
s determlpned, whlle the spatlal complex can be obtalned from the
terns
s 2 LY dk (@)
( D(B)}) 1, { D(8) 1] and ——— ,namely,
x Ax dz J2 dz
1 1
Ky = 3 and k, = 5 . 119)

91 a2
Using equations (18) and (19) equation (2) becomes

2 2
G = B) 9192 [3v12 + 2vyw,y 1 3v22) + q197 (3B - By + By) [k " + kgl
+ Bg qiq92 k2 - Bgqgy9; (vq(3ky + kz) + vy (kl + 3k2)l
+ B7 q9192 (Ul + Uz)(kl + ko2} + Bg qy (Hl + 2H2)

+ 2 (By-B3+B4) q1q2 k1kp - {Bg - Bi1p) q1 kj - (2Bg - Blp) q) ;%,
{20)
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where , N 1 1n(1_c2)
Bl = —— Cl C2 ( -+ + 2 1 {21)
4 C» 2(1-¢9) C)
2A70
By = Ayl 2 ¢d (ap oy - 2 e
2A9Cy- 1
1 - {1 - Cp) (s
[ -
2?2 (2M9€) - 1)(2A3C; - 2)(2A2Cy - 3)
2A2C3- 2 2A9Cy- 3
(1 -cp) 2L (1 - cpn- 2t
= - | (22)
Ca(2A2Cy - 2){225C, - ) 2(2H2C1 ~ 3)
2A3Cy-1
B = 2 2 2 2R84 1 - (1 - Cy)
3= 2r Ay" C1” Co%(A2 €3 - 1)e {
Ca(2A9 C3~1)(2A7 Ty - 2)
2A5Cqy- 2
(1 - ¢y 271
- ) (23)
{2h9 C; - 2)
2A92Cy- 1
2 2 2h46¢ 1 - {1l - Cjy) 21
Bg =m A C" Cye { 1 (24)
2h3 C; -1

284(A4-AgO,)
Bg = n A}z C12 C22 e ga!lfAq~AgY,

1
[ a’ 1= ag + 205085 + €1 102 - ¢ 22047,
0

2
2C10 A4- Ag(205+ Cyln(l - Csa Y¥)! - 2
(1 - Ca a2] 1 4 5 a 1 2 da (25)
AaC)
2 . 2 Ages 1 - (1 -Cy)
Bg = n A Cy C2 (A2Cl - 1)e { 2
C27 (a3 C1)(A3 Cy~1)(A3 C1-2)
A,Cy- 1 AsCy- 2
(1-c5y 271 (1 - ¢ 271

- - ! (26}

CZ(AZ ¢ - l)(AzCl - 2) 2 (Az C; - 2)
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A,C ACy-1
) Agog L -(l-cpyy 2t (1 - ¢y i1
By == Ay Cy C, e L - -
C2(A2C1)(}\2C1 - 1) (Azcl - 1)
8 2 2 O8g(Ahg-Acglq)
By = Ay C;" C2" e
Lo 2
J a l- Ay + 2A5(8g + C) 1n(l - Cy a%))!}
0
CylAg- Ag(20,+ Cy Lln(l - C9 2a2))) - 2
1 - Cpaly 1T RS eT ML 2 da
16 Bs{R9t Ay - AgO,)
By = —— A, A3 C12 €30 (Ap cp -1y e @20 T4 T N5Te
3
1oy 2
[ a? t-n4 + 2as005 + €y 11 - ¢ a0,
0
Cy(Ar + Ag - Ac(20g + Cy ln(l - Cra2))t - 3
(1 -c, a2)CiR2 q 5(20g 1 2 aa

O4(A9 + Ay - AgBg,)
Byg = 8 Ay Ay Cy2 Cy2 e o 2 1 >vs

o’ 2
‘J a® [ -Agq + 2Agl0g + C; 1In(l - C3 a"))).
0

- czaz)cllaz ¢ Ry - Ag(2085 + Cy Ln(l - Cy a2))] - 2

MINIMIZATION WITH RESPECT TO THE TEMPORAL COMPLEX

(21}

(28)

(29)

da.
(30)

Hinimizatlon of the constraint (20) with respect tp the temporal

complex vj and v; implles that
(aG/avl) = By qy q3 (6w) + 2wyl ~ Bg q1 q2 [3ky + kp) +
+ B7 qy 93 (ky + kgl + By qy = 0
and
(aG/sz) = By gy g2 t2w) + 6¥3]l - Bg q) G lky + ko) +
+ B7 @y g3 lky + k]l + 2Bg qy = 0

Solving equatjona (31) and (32} for vy and v and substlt
from {18) and (19) ve have:

(31)

(32)

utlng
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. 4Bg - B7 1) B7 ) Bg q1
ql = - 2 - ’
88y 9 8By Q2 16 By q2
. 4Bg - B7 1 Bq ]2 5Bg (31)
Q== — — - -— - .
C:0 92 BB} q) 16y

MINIMIZATION WITH RESPECT TO THR SPATIAL COMPLEX

The mlnimizatlon of constralnt (20) wvith respect to the spatlal
conplex ki and k; givesn

. Bg{4By - B3 + B4) - By B 1 Bg(By - Byg) ~By By 4q)
q1 = — -
Bg(2Bg - B7) a Bg(2Bg - Bq) ay?
1  Bg(Bg - 2Byp) + By By q 1 Bs(Bg - Bq)
- — - — q1»
4 Bgl(2Bg - B7) q2 4 Bg{2Bg - B7)
(34)
. B¢ (4By ~ B3 + By) - By By 1 Bg (B3 - Bg) - Bz By Q3
qz = — — — - —
Bg (2Bg - B1q) Q2 Bg (2Bg- B7) qt
1 Bg (5Bg - 2Byg) - Bq Bg 1 Bg (3Bg - By)
e r— 2 .
4 Bg (2Bg - B17) 4 Bg (2Bg - E7)

The solutien of the coupled syatems of dlfferential equations
(33) or {34) glves the value of the penretratlon depths qy and q, as
functlons of tlme. It should be noted that the coefflcients 1In the
differentlal equatlona depend on the valuea of the constants Cy and
Ca.

CALCULATION QF THE CONSTANTSH

For slmpllcity the effect of gravlty can be neglected, hence
equatlion (17) becomes

8 =8s + Cy In(l - Cy (£2/g%)) , (35)

vhere r2 = x2 + zz.

The condition to be satlsfled at the vettlng front lsa

- Dte) ( 38/ar) = (8y - 8y)g

|6 PY:)
v

Substltetlng Exom equation (35), then

. D(QH) 2 Ci Cz 1
q = . (16)
ey - 9y 1l - Gy q
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Algo, 1f the influence of gravity \s ignored, the coupled aystems
of dlfferentlal eguatlons (33) and (34) beaome respectively :

236 - B.’ 1
—, (37)
4By g

0.
n

2B2 - B3 + Bj 1
= — (398)
2B6 - B7 q

ae

Comparieon of the coefflcients of equatlons (36) and (37) glves
8D(68y) C; C2 By = (By - B1)(Y - C2)}(2Bg - B7) , {39)
while that of equations (36) and (38) glves
D{6y) Cj Cp (2Bg - By) — (@, - 01)() - C2)(2By - B3 + Byl .(40)

The substltutlon of the conditlon (16) in the trlal function (17)
ylelds

(6 - ©O6,.)/C
Cp=1-e " s?/m (11)

The numerliral solutlion of -he two non-linear equations (39) and
(41) glves the numerical values of the conatants C1 and C,; in the case
of minlmizatlon of Gauss constralnt with respect to the temporal part,
vhile those values could be obtalned from the spatlal part by solving
equaticns (40) and (41).

The vettlng front molsture content 8, may be taken arbitrarily to

be

8y, = 0, + a, (65 - 04) ,
vhexe ay 15 a constant to be assumed.

NUMERICAL REJULTI

The technlque just described has been applled to an alluvlal
sandy clay loam aoll. The data used vere taken from BSome experiments
i51. The i{nltlal wvater content 6( and the wvatgr ontent near the
saturation 85 were found to be 0.16 and 0.5! cn /cm respectively.
The 30ll wvater diffuslvlty D(®) and the caplllary conductlivity k{(6)
vere fltted by the folliowlng exponentlal expressions:

64.865%10° exp(23.3858 @), for @y s & s 85, 142)
13

D(®)

X(8) 64.549%10

exp(64.8697 6 ~ 43.7416 8?%)
for 8y s B 5 B4- (43)

The calculations are carried out to determine the vater content
dlstribution and the location of the wettlng front and thelr varlatlon
with the tlme 11ln the domaln shavn 1In Flgurell). The geometrlcal
dlwensions are X = 55 cm, 2 = 60 cm and R = 5 cm. The conatant ay vas
assumed to be 0.15.

It shouvld be noted that the alnlmlzatlon of Gauss constralnt with
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t to the temporal complex ylelds much better results.
[eapegolugloneof tge systempof eguatlons (39) and (4)1) by using Nevton

Raphaon'a method [7] glves the folloving results:
Cy; = 0.0782 C, = 0.3777
Substltuting the above values lnto equations (21) , (26) , (27)

and (28) and using the Romberg integratlon method (7) to evaluate the
integral on the right-hand stide of eguatlon (28), we have:

By
Bq

0.03915 Bg = 0.2811
0.1147 Bg = -0.0014

Substituting the numerlcal values of By , Bg , By and Bg §n
equatlons (33) and using the Runge-Kutta method (7] of lntegration ve
get the penetratlon depths g) and q@7. The results are given ln
Table (1).

Table (1) Varlation of the penetratlon depth wlth time for the
irregatlon by furrows for alluvial sandy clay leam soll

Tlme (mln) q) (cm) q; {cm)
121 18.01 18.31
305 28.02 28.72
562 37.87 39.16
877 47.29 49.32

LI. INFILTRATION FROHM EQUALLY
9PACED BURIED PIPES

The Gauss princlple can also be applied to the case of
inflltratlon from burled plpes. Flgure (3) showa the burled pipes,
which dlvide the reglon lnto symmetrical slabs. Each slab ls subdlv-
ided Ilnto twvo parts, one of vhlch 1lles above the x axls vhere the
molsture content dlstrlbutlon Sakes the iotm

b ¢ z

6 = 84 ¢+ C1 Inll - Co | 3 + 5 )} (44)
q] 43

and the other part lles below the x axls in whlilch

x2 z2
9=95+C1 ln[l—C2 { 2 + 2 )]' (45)
Q1 d2
vhere g3(t) , g;(t) and g,(t) are the penetratlon depths Iln the

dlrectlon of negative z axls, posltlve x axls and posltlve z axls
respectlvely.
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Wetlting front

Fig.(3) Schematic dlagram of a
homogeneous sol)l irrlgated § xy
by a set of circular buried —
pipes equally spaced at

distances of 2X.

Fig.(4) Schematic diagram of
the wetting front in
the case of burled pipek.

The boundary concitions In this case are:

l -8 =84 ’ x =2 =0 ; t 220
91 =93 = q3 = R ; t =0.
e - q3 <z ¢ -R
r =0 ; x =4 ; .
dx R <z < qy
da
3 - =0 i z =0 ; R <x <qy ,
dz
1 - 68 =98, along the wetting front.

The anakysls i3 analoqecus to that of the furrow casme which leadns
to two systems of dlfferential equations, The flrat system resultlng
from the minlmlzatlon of the functjonal G with respect to the temporal
camplex q3/93 , q1/q1 and g3/q7 has the farm:

4Bg ~ B7 1 By 93 S8y
8B) 91 8B Q1 16B,
. iBg - By 1 B9 q1 Bp q1
qy » ————— —— - 3 + — ’ (46)
8B, 91 8By g3 168y g3
. 4Bg - By 1 B9 q2 5By
9 = —— - = -
9By q2 88y q) 168,
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vhile the second syatem resulting from the minimigation of the
funcflional & wlth respzct to the spa%lal complex l/Q3! , 1/q;° and

1/q7 1s :
Bg (432 - By qu) - 52 By 1 Bg(B3y ~ B8¢) - B7 B7 g3
q3 = - .
Bg(2Bg - B1Y) g3 Bg(2Bg - B7) Q3
1 36(589 - 2310) - By Bg 1 35(336 - B9)
+ — t 93,
4 B¢ (2Bg - B7) 4 Bg{2BRg - B17)
) Bg(4By - B3 + B4) - B, B7 L Bg(B3y - By) - B2 By qi
Q1 = _— - 3 (47)
Bg{2By - Ry) q1 Bg(2Bg - B9) q3
1 BG(Bg - 2B1g) + B7 Bg q) 1 Bgi(Bg — B7) |
[FU— - — q1-
4 Bq(ZBG - H7) q3 i BG(2B5 - 31]
Bg{4By - B3 + By) - B By 1 Bg(By =~ By) - By B9 q2
q2 = -
B (2Bg - B7) a2 Bg(2B¢ - B7) a1’
1 Bg(5Bg - 2B1g) - By Bg 1 Bg(3Bg - B17)
- _— + Q2.
4 Ag(2Bg - B7) 4 Bg(2Bg - B9)

The values of By to Byp in the last two systems are the same
as stated before in equatlons (21) to (30).

The calculatlons were carrled out Eor the same so0il conajdered
in the furrow case . So the canstants C; , €y aad By to Byg have the
3ame numerical values as before., The flow medium shovyn 1n Flgure (3}
nas the followlng geometxrlical dimenslons:

Zy =40 cm , X = 45 cm , Z = 50 cm , R = 5 ca.
The numerlcal solutlon of the aystem of equatlors (46) using

Runge-Kutta method glves the penetration depths q), q; and g3. The
results are shown In Table (2),

Table (2) Varlatlon aof the penetratlon depth with time for the
irrigation by buried plpes tor alluvial sandy clay loam s0il

1 I T

i Time (mln) | qaflem) ! qylem) 1 q, lcm) l

L { -t ; ]

[ 119 I 17.39 | 11.87 | 18.15 !

. 303 | 6.7 ‘ 27.41 ) 28.59
I 35.86 | 37.10 | 3%.30 ‘
d .

567
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RESULTS AND DRISCUSSIONS

The watexr coatent dlstributlicon after 877 minutes of infiltration
by a furrow 1s designated bx the iso-water content Llines of 0.48,
0.45, 0.40, 0.30 and 0.2! cm”/cm”,Piguxe {5).

Figure (6) showvs the water content distribution atter 567 minutes
of inflltration €fxom a buried pipe. The iso-vatqr cqntent lipes arxe
for values of 0.48, 0.45, 0.40, 0.30 and 0.21 cm~/cm" .

It is clear Erom Flqures (5) and (6} that the wvater content in
the flow medlum changes with time and space In both dlrections. The
vetting front ( lines of @ = 0.21 ) advancea outwards of the wvater
source at a decreaslng rate. The llnes of equal water content close to
the water source are wlde apart compared wlth those <clcse to the
vetting front. The closeness of the equal water content lines
indicates a steep qradlent of 6. Klute (1) shovwed that the steep
vater content gradlent at the wetting front is dQue to the strong
dependence of k(8) and hence 0(8) aon the vater content, Equations (42)
and (43).

It |s also noticed that for all considered tlmes, the vertical
perietration of water below the water scurce exceeds that in the horiz-
ontal direction for noth cases of furrows and buried pipes. 3n tLhe
other hand in the case of buried pipes the penetration In the horizo-
ntal direction exceeds that in the vertical directlon above the water
source. This Is due to the gravitatlional term Jdk/dz ia the flow
Equation (1), (L}, °

Quantltatlve comparison between the results obtalned by the Gauss
technique and the ADI method {(5) ls discussed 11ln viev of the water
content distrlbution in the x and z directions and the location of the
wetting front. Fiqure (7) shows the water content distrilbutlon along x
and z axes for the case cf lrrigatlon by open furrows while Figure (A)
shovs the water content df{stributlon along negatlve z , % and posltive
Zz axes for the case of irriqation by buried pipes. The water content
distribution was plotted as a function of the dlstance at two
different time periods corresponding to two different ipfiltration
depths for every single space coordlnate, l.e. vhen the wetting Eront
reaches a depth of 30 and 50 em. belov the centre of the furrow or 20
and 40 cm. below the centre of the pipe along the central vertical
pPlane.

The locatlion of the wetting front could serve as an index for
comparing the calculated results using different methods. Filgure (9]
shovs a comparison betveen the location of the computed wetting front
using the ADI method and the Gauss technique as a functjon of time and
space coordinates tor the case of lrrigqation by open furrowvs. The sane
comparison for the case of irrigation by buried pipes is shown in
Figure (10).

CONCLUSION

A comparlson of water content dilstrlbutlon obtained by the ADI
method and the Gauss technlqQue s nmade for dlfferent perlods of ¢time
along the horizontal and central vertlcal axes. The overall shape of
the molsture dlstrlbutlen curves obtalned by the G3usg technlqgue and
their dependence upon the {nfiltration tilme are ln good agreement wlth



M. 14 Y. Z. DOUTROS, H. MANSOUR and I. A. CL-AWADI

that computed using the ADI method. The most remarkapie feature of the
Gavss technigue 13 that the computalon time 1ls reduced to about 1/%00
of the time requrled to get the same resuvlts uslng the ADI method.
Thus the Gauss technique ls highly recommended whanever 2 trlal
functlon s avallable.
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Fig.(7) water content distridbution &(x,0) and o(0,2z) ae obtained

by the Gauss principle tschnique (solid lines) and the
AD]I method (droken lineg).
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Fig.(8) WAter contant distribution 6(x,0) and 6(0,2) as obtajined
by the Gause principle technigque (80lid linesa) and the
ADIl method (broken linss).
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Flg.(9) VWetting front poeition far irrigation by open furrows ae
obtained by the Gauss technique {eclid lines) and the
ADI method (broken lines). Infiltration period in

mfnutes {& shown on the curves.
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Fig.(10) Wetting Iront poaition for irrigation by buriad pipes ae
obtuined by ths Gauss technique (e0lid 1inee) and the

ADT wmethod (broken lines). Infiltration period in
minutee ia shown an tha curves.



