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Abstract: The topic of the article is proposing the inverse power Exponentiated Pareto,
a new three-parameter lifetime distribution. The proposed distribution is obtained as the
inverse form of the power Exponentiated Pareto distribution. Some statistical properties
of the inverse power Exponentiated Pareto model are introduced. The model
parameters are estimated based on maximum likelihood. To evaluate the performance
of estimators based on their mean square errors, an extensive simulation is conducted.
The proposed model's superiority over some well-known distributions are observed
using two sets of real-life data. The observations show that the proposed model can
produce a better fit than some well-known distributions.
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1.Introduction

The Pareto distribution is a very simple and
flexible  model, having  features  of
accommodating  various  types.  Besides
providing a suitable model for typical income
and wealth data through some more flexible
and generalized variants of the classical Pareto
distribution, these are found very useful in
various problems related to life testing, survival
analysis, telecommunication, actuarial science,
economics and finance etc. In statistical
literature, the Pareto distribution has been
widely used as a model to analyze a variety of
socioeconomic issues. In fact, the Pareto
distribution and its generalization give a very
flexible family of heavy-tailed distributions that
may be used to model income distributions as
well as a wide range of other distributions
associated with social and economic problems.
For a more extensive discussion on the use of
these models in the context of income
distributions, see Villasefior and Arnold [1]. Pal
et al. [2] and Ali et al. [3] analyzed and
discussed the properties of a variety of
exponentiated distributions, including the
exponentiated  Pareto  distribution.  They
illustrated that the distribution of NASDAQ
data from the American stock exchange fits
perfectly  with exponentiated Pareto

distribution. Some more exclusive examples
where the Pareto distributions provides good fit
are the standardized price returns on individual
stocks, the width of human settlements, the
volume of oil reserves in oil field etc. It was
made by adding an exponentiating parameter to
the cumulative distribution function(cdf) of a
Pareto distribution. The Exponentiated Pareto
distribution (EPD) was proposed by Gupta et
al. [4] as an effective method for evaluating a
variety of lifetime data.

Exponentiating the cumulative distribution
function (cdf) of an existing model is the basic
idea of exponentiated distribution. Due to the
additional parameter, it gives the conventional
models more flexibility. For estimating the
location and scale parameters of the EPD,
mahmoud et al. [5] depend on progressive type-
Il right censored order statistics and maximum
likelihood estimators (MLEs). The EP
distribution has a very flexible structure as a
result of its decreasing or upside-down bathtub
form failure rates depending on shape
parameters.  This  characteristic ~ gives
advantages for modelling extreme phenomena,
especially for hydrology, see Chen and Cheng
[6]. Additionally, the EP distribution's heavier
or lighter-tailed properties make it a practical
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alternative to the exponential distribution. Afify
[7] presented the conventional and Bayesian
inferences for EP distribution under different
censoring approaches. Al-Omari et al. [8] also
analyzed the stress-strength reliability for EP
distribution based on several sampling
methods.  They illustrated how  the
Exponentiated Pareto distribution and the
Nasdaq data tail distribution fit each other well.

The probability density function (pdf) of a
random variable X has the Exponentiated
Pareto distribution given by:

fep(x,a, B) = af (1 + x)~(B+1)
(1-A+20F) 5 xap>0, O

where the scale parameter is A and the shape
parameters are o and . According to Eq. (1),
the cumulative distribution function (cdf) gives
as follows:

Fep(x,a,B) =(1-(1+ x)‘ﬂ)a; x,a, B > 0.
)

when o=1, the Exponentiated Pareto
distribution (EPD) reduces to the standard
Pareto distribution of the second kind with C=1
and a=), see Johnson et al. [9].

In this paper, we modify the power
exponentiated Pareto distribution using an
inverse scheme. In order to construct the
inverse power Exponentiated Pareto (IP
Exponentiated  Pareto)  distribution,  we
specifically rely on the random variable Z=(1/y)
distribution. The literature has investigated
several inverses of well-known distributions,
showing characteristics that are distinct from
those of the base distributions.

On the other hand there are many researcher
who are interested to expand a modification of
the power of distributions are, Hassan and Abd-
Allah [10] introduced the inverse power Lomax
distribution, Ghitany et al. [11] presented
power Lindley distribution and associated
inference, the statistical theory and application
of the inverse power Muth distribution was
presented by Chesneau and Agiwal [12] and
Afify et al. [13] proposed a new two-parameter
Burr-Hatke distribution, as well as the
characteristics and applications both in
Bayesian and non-Bayesian inference. The
inverse Exponentiated Pareto distribution

(IPEP) distribution is a new three-parameter
distribution that we first introduce. The IPEP
distribution’s  statistical characteristics are
provided. Second, using two real data sets, we
consider parameter estimates for IPEP
distribution, with the first data set representing
growth hormone. Growth hormone deficiency
was identified in children of the Program
Hormonal (de Crescimento da Secretaria da
Sa'ude de Minas Gerais), and the second set of
data represents the Susquehenna River's
maximum flood levels (measured in million
cubic feet per second) at Harrisburg,
Pennsylvania, between 1890 and 1969.

This Paper can be designed as follows. In
Sect. 2 describes how the IPEP distribution is
constructed. In Sect. 3 some statistical
properties are discussed. In Sect.4 estimation of
the parameters is derived. In Sect. 5 Simulation
study is carried out to provide an illustration of
theoretical results. In Sect. 6, the significance
of the IPEP model is shown using real data sets
followed by concluding remarks.

2 Inverse Power Exponentiated Pareto
Model

In this section, we introduce and study the
inverse power Exponentiated Pareto (IPEP)
distribution. Mathematically, the distribution is
defined with the following pdf:

fIPEP(x! a, ﬁ! A) = aﬁlx_/’l_l(l +
—B— _pya—1

x"l) A1 (1—(1+x"1) B) ;x,a B, >
0, (3)

where o and P are the shape parameters and
A 1s the scale parameter.

The cdf corresponding to Eq. (3) is defined
by

N

FIpEp(x, a,B,){) =1- (1 - (1 + x_l) ﬁ) ;

x,aB,A>0, 4

Figs. 1 and 2 show several graphs of the
distribution's pdf and cdf for various parameter
values. The pdf of the IPEP distribution is quite
flexible and can assume several forms, in Figs. 1
and 2.
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Fig. 1: The pdf of the IPEP distribution for
some parameter values.

a=1.5, p=1.5, A=0.5 |]
a=1.5, p=1.5, A=01
a=1.5, p=1.5,A=15 ||
a=1.5, p=1.5,A=.2

EII Elr 1IEI 1I5 ZIEI 2I5 B:ZI
Fig. 2: The cdf of the IPEP distribution for
some parameter values.

In the IPEP distribution, the hazard rate
function (hrf) and the survival function are
provided, respectively, by

f(
hipep(x, @, B, 4) = Tg =

aﬁlx_l_l(1+x‘l)_ﬁ_1<1—(1+x_)‘)_8)

(1—(1+x—l)_ﬁ)a
0, (&%
and
Sipep(x, @, B, 1) = u
(1-@+x)?) s xapr>o (@
Figs. 3 and 4 illustrates plots of the IPEP
hazard function and survival function some

specified values of the parameters.
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Fig. 3: The hazard function of the IPEP
distribution for some parameter values.
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Fig. 4: The survival function of the
IPEPdistribution for some parameter values.

3. Some Structural Properties

Here, some statistical characteristics of the
IPEP distribution such as, quantile function,
ordinary incomplete momments, the probability
weighted momment, momment generating
function, Re'nyi entropy, order statistics and
stress strength parameter are obtained.

3.1 Quantile function

The quantile function in probability and
statistics provides the value of a random
variable for a probability distribution such that
the probability of the variable being less than or
equal to that value equals the provided
probability. The quantile function of x, where
X~IPEP ( x; o, B, A >0,) by putting
Fipgp(x,a,p,4) =U as

1-(1-@+x)7F) =y,

then

-1

x=({(1- 1—U§%—11.
(1-a-uy)

()

The random variable X=Q(U) is given by
Eq. (7), if U is a uniform variate on the unit
interval (0,1).

3.2 Ordinary and incomplete momment

Ordinary moments can be used to obtain
many of a distribution's basic properties and
characteristics. Assuming that X is a random
variable with IPEP and the parameters o, and
A, it is simple to calculate the rth incomplete
moment of x from pdf Eq.(5) as illustrated
below
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a-1
EGn =) —ap-1i(* T ) B(S
i=0
+ 1,8 + 1)—%+ 1).
©)

Proof

[o¢]

EGT) = f X" fipgp (6, @ B, A)dx
0

then

E(x") = f

0

(o]

xraﬂlx"l‘l(l + x‘l)_ﬁ_l

_prna—1
(1 - (1 + x"l) B) dx
by using binomial expansion

_ -1
(1 —(1+x7%) B)a
a—1
_ Z (-1 (* 7 Ha
i=0
+ x‘l)_ﬂl,
then
a—1
E(x") = z ap(-1) (*7 h.
i=0
Thus, the computation of this integration

'[OO xr"l‘l(l + x"l)ﬂ(iﬂ)_ldx
0

—_1B(_r+1 (i+1)—2
=7 Bl tLAG P

+1),

where(‘Tr +1,BG(+1)— /11 +1 ) incomplete
Beta function.
This completes the proof.

3.3.Theprobabilityweightedmomments(PWM
s)

The PWMs can be defined for any random
variable whose ordinary moments exist. They
are expectations of particular functions of a
random variable. When the inverse form of an
extended distribution cannot be explicitly
described, the PWMs approach can be used to
estimate the parameters and quantiles of the
distribution. According to IPEP, the (r,s)th
PWMs of X following the IPEP distribution.

Let's v, s, is defined by

s atai—1

=y > —apa - (3 (AT

i=0 j=0
-r ] r
B(5+1LBG+1D) +Z)'
€
Proof

vT,S

f_oooo x" fipep (X @, B, D[Fippp(x; a, B, 1)]°dx,
then

Vrs

) 'f“x’ [1 - (1 - (14 x"l)_ﬁ)a]s dx.
By using binomial expansion
=G0 =3 ()
(1 -(1+ x‘l)_ﬁ)ai,

then

N

. rS *®
Ves = Y afA(-1D(; f xTA1(1
, ZO pa1(7) | (
+x"1)_3_1 (1
- (1 + x"l)_ﬁ
by using binomial expansion

(1 -(1+ x"l)_ﬁ
ata;—

1
- 3 (o

+ x‘)‘)_ﬁj,

at+ai—1
) dx,

)a+ai—1

then

s ata;—1

Z Z apA (=) (f) (a + f;i - 1)

i=0 j=0
fooo x"A (1 4+ x"l)_ﬁ(jﬂ)_ldx.

Thus, the computation of this integration

f x"A (1 4+ x"l)_ﬁ(jﬂ)_ldx
0

Vrs

=_71 B(_Tr+ 1,ﬂ(j+1)+/%).

This completes the proof.
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3.4 Momment genrating function

Only negative values of its variable t are
defined for the moment generating function
(mgf) M,(t) that corresponds to a random
variable X with IPEP and parameters a, § and A.

Following that, the momment generating
function of X is given by:
M0 = BE™) = [ e fdx
0

ot

= 5 ]_,f x’ fipep (X; @, B, )dx
- *J0
j=0

-3 k()

j=0

a—1

Z ]
]Ol

—ap(-1) (* )],B(
+1,ﬁ(i+1)—/—1+1>.

(10)
This completes the proof.
3.5 Rényi entropy

The Rényi entropy is one of the most
popular measures used to quantify the
variability of random variable X. Entropy is a
measure of system unpredictability that is
frequently applied in areas including physics,
cancer molecular imaging, and sparse kernel
density estimation. In the case of an IPEP-
distributed random variable, X, the Rényi
entropy, for R>0 and R#1 is given by:

Ip(x)

I
o

= (B (-1

aR —R _a\-Bi
X ()@
J=0

g
1-R B<R(/1+1)—1 MBG+R) +AR—RA+1)+1
PR p)

(11)

;R>0and R # 1.

Proof
In(x) = 7= log [ fo “(feenCei A))Rdx],
then
Ix(x) = —log UOOO (amx—ﬂ—lu

+ x_’l)_B_1 (1
)Y

)

ﬁlog [fooo(aﬂ/l)Rx‘Rl‘R(l +

_A)—R,B'—R (1 _ (1 + x_A)_ﬁ)aR_R]l

by using binomial expansion

(1-@+x57)""

aR-R R_R
. (aR —
=S
+x"1)_ﬁj,
Then
Ig(x) =

Lotog 55 ~(apnr -1y (R T F) [ amor (14

) B(+R)— Rdx].

So.
Ig(x) =

“api -1y (N R
) B(+R)— Rdx.

Thus, the computation of this integration

fow x RAR(1 + x"l)_ﬁ(jJrR)_Rdx =
-1 _ (R(A+1)-1 AB(j+R)+AR-R(A+1)+1
7B ( A 2 )
This completes the proof.
3.6 Order Statistics

In the fields of reliability and life testing,
order statistics have been extensively used.
Order statistics play a significant role in many
areas of statistical inference. Assume that X;,
, X, 1S a random sample from the IPEP
distribution. Let the corresponding order
statistics be denoted by X(1y, X(2y,.e.... » X(n)-
The probability density function of the rth order
statistics is provided by

fx(r) (x)
n-rj+r-1

1 L
- B(r,n—r+1) z z apA (=1

I [ [CEE O R ¢

Py

3 (1 N x—/l) )a(l+1) 1.
(12)
Proof
fxey () =
f(x) i Mm-r j+17—
e (U ) Eop
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then
fx(r) (X) = N
B(rm— r+1)2 (_1)j ( j )aﬁﬂx“l_l(l +

)P 1= () ?) T -
(1-(1+ x"‘)_ﬂ)a]m_l,
by using binomial expansion
avj+r—1
[1— 1—(1+x"1)_ﬁ)] =
Sy (T (- ey )
This completes the proof.

3.7 Stress-strength parameter (SSP)

The measure of system performance (stress-
strength reliability measure), defined by
R=P(Y<X), is given as the following; X
represent the ability of the system under stress
Y and assuming that X and Y

IPEP (x;aq,B1,4),) and IPEP (x;ay, B2, 1),
respectively.

perey 5 e ()

B(1,8, (z+1)—32])

i=0 j=0
(13)
Proof

R:fooo frpep (% @y, Br, DF21pep (X5 ag, B2, A dx
then
R=f; aypyax (1 + 21 7 (1 -

— 1—1
(1+x7%) Bl)a
x—l)_ﬁz)az]dX,

[1-(1-(1+

:J«OOO alﬂll’lx_l_l(l + x_A)_

_ -1
(1+2))"

B1—-1 (1 _

dx — fooo a P Ax (1 +

NPT (1-(1+ x—ﬂ)‘ﬁl)al_1 (1-
(1+x2)7) " ax,
then

R=1- J:o a fyAx~ (1 + x_’l)_ﬁl_1 (1
—(1+ x-l)_ﬁl)al_1 (1
— (1 + x"l)_ﬁz)a2 dx.

By using binomial expansion

(1-(@+x%)7)""

a-1

_ Z - ("

i=0
+ x"l)_ﬁli

a

then
R =

1= 38 T s () ()

]
f x4+ x"l)_ﬁl(iﬂ)_ﬁzjdx.
0

Thus, the computation of this integration

f x_,'l_l(l+x_;1)—ﬁ1(i+1)—ﬁ2]'dx
0

-1
=—-B(LAy(i+1) = Baf).
This completes the proof.

4. Method of Estimation

In this section, we will through how to
estimate the IPEP distribution's parameters a, 3
and A using the maximum likelihood method.
We assume that X= (x;, X5,...... , Xn) IS @
random sample of size n from the IPEP
distribution with unknown values for a, B and
A.

4.1. Maximum Likelihood Estimation

The best known technique for parameter
estimate is the method of maximum likelihood,
see Casella and Berger [14]. Its effectiveness is
due to a number of appealing characteristics,
such as consistency, asymptotic performance,
invariance, and intuitive appeal. Assuming that
the observations from IPEP(a, B, A) were used
to generate a random sample of size n, the log
likelihood function is provided by:
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n

L(x,a,B,1) = 1—[ aflx; 471 (1 + xi"l)_ﬁ_l (1 - (14 xi"’l)_ﬁ)

i=1

a—-1

—fR— _ a-—1
= a " T () (1= () )
(14)
By applying In function on both sides,
P a,B)=nlna+ninf+nind+— A+ 1)Zln(xl) B+ 1)Zln(1 +x72) + (a

—1)zloln 1-(1+x7)7" +(a—1)2 n(1-1+x)7).

We obtain the following normal equations by taking the first derlvatlves of £(x; a, B, A) with respect
to the parameters o, f and A parameters:

6€_n n -\~ B
£—5+Zi=0ln(1—(1+xi ) ),

(15)

Z In(1+x%) — (@ =D XE,(1+ xl_l) (1 +x~")
aﬁ Lol =1+ x,17F)
(15)
and
o0 n B+D ST n(x)  Bla-1) T x i) (1+2,2)
ot n__ 1 + i=0 _ 1=0
o1 =1 LimoIn(x1) imo(1+x;7%) o (1) (1-(14x,72) F)
(17)

By using the Newton-Raphson iteration approach for the solution of nonlinear equations after
equating them to zero, it is possible to get the maximum likelihood estimators of the parameters a,
and A.

4.2. Fisher's information matrix

The Fisher information is a measure use for mathematics statistics to assess the amount of
knowledge that an observable random variable X knows about unidentified parameters of a
distribution that models X. Formally, it is known as the score's variance or the expected value of the
observable values. We utilized to make the information matrix in order to determine out an
confidence intervals for the parameters. I,, (a, B, A) is the corresponding 3x3 observed information
matrix.

9%¢  0%¢  0%¢
(aaz dadp aaaaw
| 9%¢  0%¢  0%¢ |
0Bda  0B%  0BIA |
kaze 9%¢  0%¢ /
0lda 0108 022

L, =

The elements of I,, are given by

0% -n
792 ™ a?
(23)
. 0%  —XL ro(1+ xl"l) n(1+x,7%)
27 dadp n(A-A+x DB
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(24)
0%t BXTox; Mn(x) (1+ xi‘l)_ﬁ_1

3= Ga01 = nA=-A+x)B)
(25)
_ 6_2€ _-n_ (a—1)2?=0(1+xi‘)1)_ﬁ ln(1+xl-‘)1)2
v (1= (rexh) )
(26)and
a%¢ -n B+DI i in(x?) | Bla-1) X x~t ln(xiz)(1+xi_)‘)_ﬁ—/3Z?=0(1+xi_’1)—2?=0xi

[, =— =
3,3 922 212 ?=0(1+xi_1)2

4.3 Approximate Confidence Intervals
It is difficult to determine the exact confidence
intervals, since the MLEs can't be determined

in  closed forms. In order to derive the
asymptotic confidence intervals for the model

parameters, we can use of the MLEs
asymptotic ~ behavior.  The  asymptotic
distribution of the observed information

matrix's inverse approximated using a large
sample. The approximated variance covariance
matrix of the parameters presented as follows:

a2 9% 92eN\ "
/60{2 dadp aaaz\

| 02¢ 92¢ 92

A= | I
dpoa 9B 9paA
0%¢  0%¢  0%¢
kalaa 0A0B 022 )
var(e) wvar(a,p) wvar(a2)
=| var(f, &) wvar(B) war(B,1) |
var(A,&) wvar(L,B) wvar(1)

Hence, the asymptotic (1-y) 100% confidence
intervals for a, f and A are given by

{aL =@ —zr /var(oT),&U
=a+zy ’var(&j},
6= 8- 2 rar @ 5,
=B +zv /var(@}
and

{/TL =A—2zr /var(ﬁ,iU =142z ’var(ﬁ}.

- (27)

2?=0(1—(1+xi-/1)_3)

Where, zy is the upper (1-y) 100% percentile of
2

the standard normal distribution.

5. Applications

In this section, we investigate the capability of
the Inverse Power Exponentiated Pareto
distribution (IPEPD) by fitting distributions,
namely, the Inverse Power Lindely (IPL),
Exponentiated  Inverse ~ Power  Lindely
(ExpIPL), Exponential (Exp), the Gompertz
(Gz), Lindely (Lin), weighted Gompertz (W-
Gz) and weighted Lindley (W-L), to two data
sets. The Inverse Power Exponentiated Pareto
distribution explain much flexibility than the
corresponding distributions. By making use of
real data set, we illustrate the applicability of
the IPEP distribution among a set of classical
and recent distributions, based on a set of
goodness-of-fit statistics. We use the maximum
likelihood method to estimate the model
parameters. We compared the models'
goodness-of-fit with the Akaike Information
Criterion (AIC), consistent Akaike information
criterion (CAIC), the corrected Akaike
information  criterion  (AICC), Bayesian
Information Criterion (BIC) and Hannan-Quinn
Information Criterion (HQIC) goodness -of-fit
statistics. Further, we get the Kolmogorov-
Smirnov (K-S) statistic with its corresponding
P-value. In general, the model has the smaller
values of these statistics and the largest value of
the P-value is the best model to fit the data.

5.1. Growth hormone data

This dataset makes up 35 observations of the
Growth hormone data set. Growth hormone
deficit was observed in children participating in
the program hormonal (de Crescimento da
Secretaria da Sa'ude de Minas Gerais). The data
includes an estimate of how long it took the
children to grow to their desired height after
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starting growth hormonal treatment. The data
set have been analyzed by Lemos de Morais
[15].

Table 1. Growth hormone data.

fun

y

-
— Empirical
— |IPEP

wil

distribut

IPL

2.15 2.20 2.55 2.56 2.63

2.74 2.81 2.90 3.05 3.41

3.43 3.43 3.84 4.36 4.42

451 4.60 4.61 4.75 5.03

5.10 5.44 5.90 5.96 6.77

7.82 8.00 8.16 8.21 8.72

10.40 13.20 13.70

Table 2 Estimais tFmedeh for srowh hormane dat 5o

Bt ey

Ml e | p | & | ac | me | acc| cac | BQIC | £5 | Poahe
BERRy | 13| 6| 20 |1 | 160 | 1 | 1020 | 1R | 0
Bl T 0E |1 | WD | 1 | D3 | | T 0%
Exf) 0 | 1mme | s | o | e (15 0 | s
e 03 | 0a |1 | | 1 | (e e e
La) 03 |16 | s | 1 |1 (o |0 e
WEafehd | 597 |0 0w | e | 19 | 10 | 10 |1ea | |
Wiafi |4 05 |10 | 16 | e | 1w 1ea | s

From Table 2, the smallest values of the K-S,
AIC, BIC and HQIC and the greatest value of
the p-value are observed for the IPEP
distribution.  Therefore, we reached the
conclusion that the IPEP distribution offers the
best match when compared to the other
distributions. The estimated densities function
for the comparable distributions of the data set
are presented based on the density function of
each distribution in Fig. 6, which supports this
result.
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Fig. 5: Estimated probébility density function
for the considered distributions for the growth
hormone data.

Fig. 6: Estimated Cumulative distribution
functions for the considered distributions for
the growth hormone data

Q-0 Plot
— T T T

Theoretical quantiles

[=]
[T

Empirical quantiles
Fig. 7: represents the empirical quantile
function of IPEP distribution
for the growth hormone data.
5.2. Flood levels data
The next dataset, which represents the
maximum flood levels (in million cubic feet/s)
of the Susquehanna River at Harrisburg,
Pennsylvania from 1890 to 1969, was given by
Dumonceaux and Antle [16]. Maswadah [17]
has examined into these data, and the results are
as follows:
Table 3: Flood levels data.

0.645 |0.613 |0.315 |0.449 | 0.297
0402 |0.379 (0423 |0.379 |0.324
0.269 |0.740 |0.218 |0.412 |0.494
0416 ]0.338 |0.392 |0.484 |0.265
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From Table 4, the greatest value of the p-value

and the smallest values of the K-S, AIC, BIC
and HQIC are obtained for the IPEP
distribution. Therefore, we reach the conclusion
that the IPEP distribution offers the best match
when compared to the other distributions. The
estimated densities function for the comparable
distributions of the data set are presented based
on the density function of each distribution in
Fig. 8, which supports this conclusion.
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Fig. 8: Estimated densities functions for the
considered distributions for the Flood levels
data.
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Fig. 9: Estimated Cumulative distribution
functions for the considered distributions for
the Flood levels data.

6. Simulation Study

This section explores the performance and
behavior of several estimation techniques used
to estimate the IPEP parameters applying
extensive simulation data. In order to, multiple
sample sizes

n= {20,40,50,100,150,200} and several values
of the parameters a, f and A, a=10, p=1.8 and
A=0.5, a=5, P=1.5 and A=0.5 are considered.
The MSE can be determined by the following
equation:

N
1 N\ 2
MSE _N;(e—e) ,

where 0= (a, B, A).

Table 5)SE of the parsmeters of the [PEP akonz with Average BIAS Averaze \SE mad Averuge mieral bensth of

Bli|n] B ] i

QM‘iBLlSlEEAICSMHASXSEAICSMIAS!& AIG
‘ |

N fmimz 098 | S48 [L66T(913) | 1200 | 0297 | 1333|051 | 038 | T

3 | 8| oy | s43s| on |LAI3|A18T| AlteT) 2186 | 197 037 | 03| 4867

E |EM54M RS TI7 |14 |ANS | L6 BT 117|187 | 644 68

IW}I)SJ‘-NM 0| 28 | 187|260 1056] 42098 | 112) 487 | 101 | S1EAS

L:c}mfam: 0I8[ 1035 (127(426 | 006 2008 |1DS | 0625 | 042 | 12409

mims@ma 06| 738 | 150|008 | asn 1ed | 105 | 08s | 03w | L6

N ',emum 1558 | 1016 | L364)-310¢ | A0627) 1ON | 1317| 4817 | 030 | 35147

3 ib.?&‘wl!]'r 179¢ | 149 (131[3208 | 17836 DLO7 09 | L4F | 0281 0790

5 tai 9 !0.‘“"41!1 1799| 1040 | 129 20| L0 14000 {0547 | 0.457 | 0268 | 3i%8)

m]méus 155 | M3 1285|4008 lmf 14623 |00a2 | 0462 | 0286 | S8W7
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Table. 6 MSE of 5{t) and i) of the IPEP almg with Average BIAS, Average MSE and
Average interval kength of ATCS.

a|p || S(t) Bit)
MLE | BIAS | MSE | AIC® | MLE | BIAS | MSE | AICS

20 | D9E1T) 00024 | 0.0003] 0.095T | B2631 | 0.0059) 00361 | 09605

30 | 09824 0.0031 | 0.0003] 00603 | 0250 | 01 | 00297 | .65BS

10| LE |03
50 | 09836 0.0063 | 0.0002] 0.0764 | 02236 | 00454 00211 | 13184

100 | 0.9852) 0.005% | 0.0001| 0.0463 | 02332 | 0.0358) 0.0134 | 05874

150 | 09866 0.0073 | 0.00001| 0.0309 | B.2178 | 00512 00114 | 03704

200 | 0.9B6S( 0.0075 | R.0000) 00238 | 0.0238 [ 0.0511) 0076 | 0.3012

20 | 09435 0.00E2 | 0.002 | 01469 | D532 0005 | 0067 | LOTTE

0 | 0.0419) 00044 | 000LL| 03736 | 05504 | .008S | 0OS16 | 16882

S (09386 (.00D1 | 0.0008| 03232 | L5BE3 | 0.0374| 003 | L7664

100 | 09436 0.006 | Q0004|0099 | 05617 | 0.0L08 | B.0166 | 05763

150 | 0941 | 00035 | .0003| (LR35 | LSB3T | 0.0329 | ROL3T | L4485

200 | 0.9447| 0.0072 | 0.0003) (L0543 | 05619 | 0.0110) 011 | 03702
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6. Concluding remarks

In this paper, we propose the inverse-power
Exponentiated Pareto (IPEP) model, a more
accurate and flexible extension of the
Exponentiated Pareto distribution for fitting
engineering and medical data. Based on the
inverse-power transformation method, the new
model was constructed. Based on the
parameters of its shape, the hazard rate function
of the IPEP distribution can take on the
following shapes: bathtub-shaped,
monotonously ascending, declining, and upside
down. As a result, it can be effectively
expanded to lifetime data analysis. Maximum
likelihood estimation is used to estimate the
three parameters of the IPEP distribution, and
some of its mathematical characteristics are
obtained. The results of the simulation are used
to investigate the behavior and performance of
various estimators and

We are going to find estimation of the
parameters of the inverse-power Exponentiated
Pareto (IPEP) model under progressive type 1l
censored data, also we will make
multicomponent stress-strength under
progressive type Il censored data and the
performance index for the inverse-power
Exponentiated Pareto distribution.
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