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Abstract: The topic of the article is proposing the inverse power Exponentiated Pareto, 

a new three-parameter lifetime distribution. The proposed distribution is obtained as the 

inverse form of the power Exponentiated Pareto distribution. Some statistical properties 

of the inverse power Exponentiated Pareto model are introduced. The model 

parameters are estimated based on maximum likelihood. To evaluate the performance 

of estimators based on their mean square errors, an extensive simulation is conducted. 

The proposed model's superiority over some well-known distributions are observed 

using two sets of real-life data. The observations show that the proposed model can 

produce a better fit than some well-known distributions.   

keywords: Exponentiated Pareto; Moments; Entropy; Quantile function; Order Statistic; Stress-

Strength Parameter; Maximum likelihood estimator. 

1.Introduction 

The Pareto distribution is a very simple and 

flexible model, having features of 

accommodating various types. Besides 

providing a suitable model for typical income 

and wealth data through some more flexible 

and generalized variants of the classical Pareto 

distribution, these are found very useful in 

various problems related to life testing, survival 

analysis, telecommunication, actuarial science, 

economics and finance etc. In statistical 

literature, the Pareto distribution has been 

widely used as a model to analyze a variety of 

socioeconomic issues. In fact, the Pareto 

distribution and its generalization give a very 

flexible family of heavy-tailed distributions that 

may be used to model income distributions as 

well as a wide range of other distributions 

associated with social and economic problems. 

For a more extensive discussion on the use of 

these models in the context of income 

distributions, see Villaseñor and Arnold [1]. Pal 

et al. [2] and Ali et al. [3] analyzed and 

discussed the properties of a variety of 

exponentiated distributions, including the 

exponentiated Pareto distribution. They 

illustrated that the distribution of NASDAQ 

data from the American stock exchange fits 

perfectly with exponentiated Pareto 

distribution. Some more exclusive examples 

where the Pareto distributions provides good fit 

are the standardized price returns on individual 

stocks, the width of human settlements, the 

volume of oil reserves in oil field etc. It was 

made by adding an exponentiating parameter to 

the cumulative distribution function(cdf) of a 

Pareto distribution. The Exponentiated Pareto 

distribution (EPD) was proposed by Gupta et 

al. [4] as an effective method for evaluating a 

variety of lifetime data. 

Exponentiating the cumulative distribution 

function (cdf) of an existing model is the basic 

idea of exponentiated distribution. Due to the 

additional parameter, it gives the conventional 

models more flexibility. For estimating the 

location and scale parameters of the EPD, 

mahmoud et al. [5] depend on progressive type-

II right censored order statistics and maximum 

likelihood estimators (MLEs). The EP 

distribution has a very flexible structure as a 

result of its decreasing or upside-down bathtub 

form failure rates depending on shape 

parameters. This characteristic gives 

advantages for modelling extreme phenomena, 

especially for hydrology, see Chen and Cheng 

[6]. Additionally, the EP distribution's heavier 

or lighter-tailed properties make it a practical 
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alternative to the exponential distribution. Afify 

[7] presented the conventional and Bayesian 

inferences for EP distribution under different 

censoring approaches. Al-Omari et al. [8] also 

analyzed the stress-strength reliability for EP 

distribution based on several sampling 

methods. They illustrated how the 

Exponentiated Pareto distribution and the 

Nasdaq data tail distribution fit each other well. 

    The probability density function (pdf) of a 

random variable X has the Exponentiated 

Pareto distribution given by: 

   (     )    (   ) (   ) 

(  (   )  )
   

                    (1) 

where the scale parameter is λ and the shape 

parameters are α and β. According to Eq. (1), 

the cumulative distribution function (cdf) gives 

as follows: 

 

   (     )  (  (   )  )
 
            

(2) 

when α=1, the Exponentiated Pareto 

distribution (EPD) reduces to the standard 

Pareto distribution of the second kind with C=1 

and a=λ, see Johnson et al. [9]. 

In this paper, we modify the power 

exponentiated Pareto distribution using an 

inverse scheme. In order to construct the 

inverse power Exponentiated Pareto (IP 

Exponentiated Pareto) distribution, we 

specifically rely on the random variable Z=(1/γ) 

distribution. The literature has investigated 

several inverses of well-known distributions, 

showing characteristics that are distinct from 

those of the base distributions.  

On the other hand there are many researcher 

who are interested to expand a modification of 

the power of distributions are, Hassan and Abd-

Allah [10] introduced the inverse power Lomax 

distribution, Ghitany et al. [11] presented 

power Lindley distribution and associated 

inference, the statistical theory and application 

of the inverse power Muth distribution was 

presented by Chesneau and Agiwal [12] and 

Afify et al. [13] proposed a new two-parameter 

Burr-Hatke distribution, as well as the 

characteristics and applications both in 

Bayesian and non-Bayesian inference. The 

inverse Exponentiated Pareto distribution 

(IPEP) distribution is a new three-parameter 

distribution that we first introduce. The IPEP 

distribution's statistical characteristics are 

provided. Second, using two real data sets, we 

consider parameter estimates for IPEP 

distribution, with the first data set representing 

growth hormone. Growth hormone deficiency 

was identified in children of the Program 

Hormonal (de Crescimento da Secretaria da 

Sa'ude de Minas Gerais), and the second set of 

data represents the Susquehenna River's 

maximum flood levels (measured in million 

cubic feet per second) at Harrisburg, 

Pennsylvania, between 1890 and 1969. 

This Paper can be designed as follows. In 

Sect. 2 describes how the IPEP distribution is 

constructed. In Sect. 3 some statistical 

properties are discussed. In Sect.4 estimation of 

the parameters is derived. In Sect. 5 Simulation 

study is carried out to provide an illustration of 

theoretical results. In Sect. 6, the significance 

of the IPEP model is shown using real data sets 

followed by concluding remarks. 

2 Inverse Power Exponentiated Pareto 

Model 

In this section, we introduce and study the 

inverse power Exponentiated Pareto (IPEP) 

distribution. Mathematically, the distribution is 

defined with the following pdf: 

 

     (       )          (  

   )
    

 (  (     )
  

)
   

          

                            (3) 

where α and β are the shape parameters and 

λ is the scale parameter. 

The cdf corresponding to Eq. (3) is defined 

by 
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)
 

; 

       > 0,              (4) 

Figs. 1 and 2 show several graphs of the 

distribution's pdf and cdf for various parameter 

values. The pdf of the IPEP distribution is quite 

flexible and can assume several forms, in Figs. 1 

and 2. 
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Fig. 1: The pdf of the IPEP distribution for 

some parameter values. 

 
Fig. 2: The cdf of the IPEP distribution for 

some parameter values. 

In the IPEP distribution, the hazard rate 

function (hrf) and the survival function are 

provided, respectively, by 

     (       )  
 ( )

 ( )
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           (5) 
and 
     (       )  

(  (     )
  

)
 

                     (6) 

Figs. 3 and 4 illustrates plots of the IPEP 

hazard function and survival function some 

specified values of the parameters. 

 
Fig. 3: The hazard function of the IPEP 

distribution for some parameter values. 

 

Fig. 4: The survival function of the 

IPEPdistribution for some parameter values. 

3. Some Structural Properties 

Here, some statistical characteristics of the 

IPEP distribution such as, quantile function, 

ordinary incomplete momments, the probability 

weighted momment, momment generating 

function, Re'nyi entropy, order statistics and 

stress strength parameter are obtained. 

3.1 Quantile function 

The quantile function in probability and 

statistics provides the value of a random 

variable for a probability distribution such that 

the probability of the variable being less than or 

equal to that value equals the provided 

probability. The quantile function of x, where 

x∼IPEP ( x; α, β, λ >0,) by putting 

     (       )     as 

  (  (     )
  

)
 

    

then 

  ((  (   )
 

 )

  

 
  +

  

 

    

 (7) 

The random variable X=Q(U) is given by 

Eq. (7), if U is a uniform variate on the unit 

interval (0,1). 

 

3.2 Ordinary and incomplete momment 

Ordinary moments can be used to obtain 

many of a distribution's basic properties and 

characteristics. Assuming that X is a random 

variable with IPEP and the parameters α,β and 

λ, it is simple to calculate the rth incomplete 

moment of x from pdf  Eq.(5) as illustrated 

below 
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Beta function. 

This completes the proof. 

3.3.Theprobabilityweightedmomments(PWM

s) 

The PWMs can be defined for any random 

variable whose ordinary moments exist. They 

are expectations of particular functions of a 

random variable. When the inverse form of an 

extended distribution cannot be explicitly 

described, the PWMs approach can be used to 

estimate the parameters and quantiles of the 

distribution. According to IPEP, the (r,s)th 

PWMs of X following the IPEP distribution. 

Let's     , is defined by 
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This completes the proof. 
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3.4 Momment genrating function 

Only negative values of its variable t are 

defined for the moment generating function 

(mgf)   ( ) that corresponds to a random 

variable X with IPEP and parameters α, β and λ. 

Following that, the momment generating 

function of X is given by: 
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This completes the proof. 

3.5 Rényi entropy 

The Rényi entropy is one of the most 

popular measures used to quantify the 

variability of random variable X. Entropy is a 

measure of system unpredictability that is 

frequently applied in areas including physics, 

cancer molecular imaging, and sparse kernel 

density estimation. In the case of an IPEP-

distributed random variable, X, the Rényi 

entropy, for R>0 and R≠1 is given by: 
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This completes the proof. 

3.6 Order Statistics 

In the fields of reliability and life testing, 

order statistics have been extensively used. 

Order statistics play a significant role in many 

areas of statistical inference. Assume that   , 
  ,...... ,    is a random sample from the IPEP 

distribution. Let the corresponding order 

statistics be denoted by  ( ),  ( ),....... ,  ( ). 

The probability density function of the rth order 

statistics is provided by 

  ( )( )
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This completes the proof. 

3.7 Stress-strength parameter (SSP) 

The measure of system performance (stress-

strength reliability measure), defined by 

R=P(Y<X), is given as the following; X 

represent the ability of the system under stress 

Y and assuming that X and Y  

IPEP (         ),) and IPEP (         ), 

respectively. 
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This completes the proof.  

4. Method of Estimation 

In this section, we will through how to 

estimate the IPEP distribution's parameters α, β 

and λ using the maximum likelihood method. 

We assume that X= (  ,   ,...... ,   ) is a 

random sample of size n from the IPEP 

distribution with unknown values for α, β and 

λ. 

4.1. Maximum Likelihood Estimation 

The best known technique for parameter 

estimate is the method of maximum likelihood, 

see Casella and Berger [14]. Its effectiveness is 

due to a number of appealing characteristics, 

such as consistency, asymptotic performance, 

invariance, and intuitive appeal. Assuming that 

the observations from IPEP(α, β, λ) were used 

to generate a random sample of size n, the log 

likelihood function is provided by: 
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By applying ln function on both sides, 
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We obtain the following normal equations by taking the first derivatives of ℓ(x; α, β, λ) with respect 

to the parameters α, β and λ parameters: 
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(17) 
By using the Newton-Raphson iteration approach for the solution of nonlinear equations after 

equating them to zero, it is possible to get the maximum likelihood estimators of the parameters α, β 

and λ. 

4.2. Fisher's information matrix 

The Fisher information is a measure use for mathematics statistics to assess the amount of 

knowledge that an observable random variable X knows about unidentified parameters of a 

distribution that models X. Formally, it is known as the score's variance or the expected value of the 

observable values. We utilized to make the information matrix in order to determine out an 

confidence intervals for the parameters.    (α, β, λ) is the corresponding 3×3 observed information 

matrix. 

 

   

(

 
 
 
 

   

   

   

    

   

    

   

    

   

   

   

    

   

    

   

    

   

   )

 
 
 
 

  

 

The elements of    are given by 

     
   

   
 

  

  
  

 (23)  

     
   

    
 

 ∑ (    
  )

   
     (    

  )

∑ (  (    
  )  ) 

   

  



Mans J Mathematics Vol. (39).2022. 23 

 (24)  

     
   

    
 

 ∑   
    (   )

 
   (    

  )
    

∑ (  (    
  )  ) 

   

  

 (25) 

     
   

    
  

   
(   )∑ (    

  )
  

  (    
  )

  
   

∑ (  (    
  )

  
) 

   

. 

 (26)and 

     
   

    
  

   
(   )∑   

    (  
 ) 

   

∑ (    
  )

  
   

 
 (   )∑   

    (  
 )(    

  )
   

     ∑ (    
  ) ∑   

 
   

 
   

∑ (  (    
  )

  
) 

   

  (27)   

4.3 Approximate Confidence Intervals  

It is difficult to determine the exact confidence 

intervals, since the MLEs can't be determined 

in  closed forms. In order to derive the 

asymptotic confidence intervals for the model 

parameters, we can  use of the MLEs 

asymptotic behavior. The asymptotic 

distribution of the observed information 

matrix's inverse approximated using a large 

sample. The approximated variance covariance 

matrix of the parameters presented as follows: 
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Hence, the asymptotic (1-γ) 100% confidence 

intervals for α, β and λ are given by 
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Where,   

 
 is the upper (1-γ) 100% percentile of 

the standard normal distribution. 

5. Applications    

In this section, we investigate the capability of 

the Inverse Power Exponentiated Pareto 

distribution (IPEPD) by fitting distributions, 

namely, the Inverse Power Lindely (IPL), 

Exponentiated Inverse Power Lindely 

(ExpIPL), Exponential (Exp), the Gompertz 

(Gz), Lindely (Lin), weighted Gompertz (W-

Gz) and weighted Lindley (W-L), to two data 

sets. The Inverse Power Exponentiated Pareto 

distribution explain much flexibility than the 

corresponding distributions. By making use of 

real data set, we illustrate the applicability of 

the IPEP distribution among a set of classical 

and recent distributions, based on a set of 

goodness-of-fit statistics. We use the maximum 

likelihood method to estimate the model 

parameters. We compared the models' 

goodness-of-fit with the Akaike Information 

Criterion (AIC), consistent Akaike information 

criterion (CAIC), the corrected Akaike 

information criterion (AICC), Bayesian 

Information Criterion (BIC) and Hannan-Quinn 

Information Criterion (HQIC) goodness -of-fit 

statistics. Further, we get the Kolmogorov-

Smirnov (K-S) statistic with its corresponding 

P-value. In general, the model has the smaller 

values of these statistics and the largest value of 

the P-value is the best model to fit the data.  

5.1. Growth hormone data 

This dataset makes up 35 observations of the 

Growth hormone data set. Growth hormone 

deficit was observed in children participating in 

the program hormonal (de Crescimento da 

Secretaria da Sa'ude de Minas Gerais). The data 

includes an estimate of how long it took the 

children to grow to their desired height after 
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starting growth hormonal treatment. The data 

set have been analyzed by Lemos de Morais 

[15].  

Table 1: Growth hormone data. 

2.15 2.20 2.55 2.56 2.63 

2.74 2.81 2.90 3.05 3.41 

3.43 3.43 3.84 4.36 4.42 

4.51 4.60 4.61 4.75 5.03 

5.10 5.44 5.90 5.96 6.77 

7.82 8.00 8.16 8.21 8.72 

10.40 13.20 13.70   

 
From Table 2, the smallest values of the K-S, 

AIC, BIC and HQIC and the greatest value of 

the p-value are observed for the IPEP 

distribution. Therefore, we reached the 

conclusion that the IPEP distribution offers the 

best match when compared to the other 

distributions. The estimated densities function 

for the comparable distributions of the data set 

are presented based on the density function of 

each distribution in Fig. 6, which supports this 

result. 

 
Fig. 5: Estimated probability density function 

for the considered distributions for the growth 

hormone data. 

 
Fig. 6: Estimated Cumulative distribution 

functions for the considered distributions for 

the growth hormone data 

.  

Fig. 7: represents the empirical quantile 

function of IPEP distribution 

for the growth hormone data. 

5.2. Flood levels data 

The next dataset, which represents the 

maximum flood levels (in million cubic feet/s) 

of the Susquehanna River at Harrisburg, 

Pennsylvania from 1890 to 1969, was given by 

Dumonceaux and Antle [16]. Maswadah [17] 

has examined into these data, and the results are 

as follows: 

Table 3:  Flood levels data. 

 
0.645 0.613 0.315 0.449 0.297 

0.402 0.379 0.423 0.379 0.324 

0.269 0.740 0.218 0.412 0.494 

0.416 0.338 0.392 0.484 0.265 
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From Table 4, the greatest value of the p-value 

and the smallest values of the K-S, AIC, BIC 

and HQIC are obtained for the IPEP 

distribution. Therefore, we reach the conclusion 

that the IPEP distribution offers the best match 

when compared to the other distributions. The 

estimated densities function for the comparable 

distributions of the data set are presented based 

on the density function of each distribution in 

Fig. 8, which supports this conclusion. 

 
Fig. 8: Estimated densities functions for the 

considered distributions for the Flood levels 

data. 

 
Fig. 9: Estimated Cumulative distribution 

functions for the considered distributions for 

the Flood levels data.  

6. Simulation Study 

This section explores the performance and 

behavior of several estimation techniques used 

to estimate the IPEP parameters applying 

extensive simulation data. In order to, multiple 

sample sizes 

 n= {20,40,50,100,150,200} and several values 

of the parameters α, β and λ, α=10, β=1.8 and 

λ=0.5, α=5, β=1.5 and λ=0.5 are considered. 

The MSE can be determined by the following 

equation: 

    
 

 
∑(   ̂)

 
 

 

   

 

where θ= (α, β, λ).  
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6. Concluding remarks 

In this paper, we propose the inverse-power 

Exponentiated Pareto (IPEP) model, a more 

accurate and flexible extension of the 

Exponentiated Pareto distribution for fitting 

engineering and medical data. Based on the 

inverse-power transformation method, the new 

model was constructed. Based on the 

parameters of its shape, the hazard rate function 

of the IPEP distribution can take on the 

following shapes: bathtub-shaped, 

monotonously ascending, declining, and upside 

down. As a result, it can be effectively 

expanded to lifetime data analysis. Maximum 

likelihood estimation is used to estimate the 

three parameters of the IPEP distribution, and 

some of its mathematical characteristics are 

obtained. The results of the simulation are used 

to investigate the behavior and performance of 

various estimators    and  

We are going to find estimation of the 

parameters of the inverse-power Exponentiated 

Pareto (IPEP) model under progressive type II 

censored data, also we will make 

multicomponent stress-strength under 

progressive type II censored data and the 

performance index for the inverse-power 

Exponentiated Pareto distribution.   
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