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ABSTRACT

Herein the physically and mathematically  singnificant

semilinear hyperbolic equation Uy = ﬂ u), where f{u) is an arbitrary

smooth function of u and which encompasses Liowville equaiion,
phi-four equation, Sine-Gordon equation, Klein-Gordon equation,
Milkhailov equation and Double Sine-Gordon equation, has been
analysed via the symmetry method as developed by Steinberg [1]. The
infinitesimals, similarity variables, dependent variables and reduction
to quadrature or exact solutions have been tabulated for the mentioned
physical forms of f{u). Some interesting outcomes of this study are the
deduction of the new exact solutions that does not seem io have been

reported in the literature.

INTRODUCTION

Ever since the work of Birkhoff [2] on " the method of search
for symmetric solutions " the technique of similarity transformation has
turned out to be one of the most powerful techinques for solving
non-linear ditferental equations. Its application has resulted in a large

number of solutions of the equations originating mostly in the realm of
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continuum mechanics. Nevertheless, the technique could not become as
popular as the corresponding technique of varable separable form and
Laplace transform technique for solving linear differential equations,
this could be due to the following reasons [3,4] :-
(i) The main apparatus of the Lie group theory concept could not be
made algorithmic.
(i) The Lie group analysis based on transformation theory of
differential equations, though a powerful and systematic approach, for
obtaining the similarity solutions of linear or nonlinear, ordinary or
partial differential equations could not be easily exploited for differential
| equations of higher order ahd for a system of partial differential
equations which is must fof most of the phystcal and engineering
situations. ‘
(iii) No link could be established with the corresponding technique of
variable separable form for solving linear differential equations.

Consequently, an attempt had to be made for devising a
technique which could take care of all the above features and yield
many more new solutions than the conventional similarity
transformation technique. One such technique is that of symmetry
method due to Steinberg (1979). Undoubtedly, the technique involves
very sophisticated tools of the theory of non-linear operators. Yet, it has
been cast in a form that is easy to utilize by specialists or non-specialists
alike.

Herein, we have utilized the symmetry method to generate new
similarity solutions of important class of ¢quations-semilinear hyperbolic

equations. This has resulted in, for physically realizable forms of the
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function of dependent variable involved, a number of new solutions of
the corresponding differential equations, either by reducing them to
standard Painleve forms or by solving them exactiy. Some interesting
outcomes of this study are the deductions of new hexact solutions of

Liouville equation, Sine-Gordon equation, Mikhailov equation, Double

Sine-Gordon and the generalized form of the Klein-Gordon equation.

SYMMETRY METHOD
As pointed out above herein we briefly outline Steinberg's

(1979) similarity method of finding explicit solutions of both linear and
nonlinear partial differential equations. The method is based on finding
the symmetries of the differential equation and is as follows:-

Suppose that the differential operator L can be written in the
form: L(n) = Z2 - H(u). (2.1)
where u=u(x,t) and H may depend on x,t,u and any derivative of u as
long as the derivative of u does not contain more than p-1, t derivatives.
Consider the symmetry operator called infinitesimal synﬁnctry, which
being quasilinear partial differential operator of first order, have the

form:

S(u) = A(x, t, u)%‘- + _il Bilx,t, 1)+ C(x, t, u). (2.2)
Define the Frechtet derivative of L{u) by

FLuv)=% Liu+sv) LG (2.3)

with these definitions in mind we need to follow the following steps:
(1) Compute F(L, u, v}.
(i) Compute F(L, u, s(u)).
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o
(if) Substitute Fi(w) for = in F(L, u, S(u).

(iv) Set this expression to zero and perform a polynomial expansion.
(v) Solve the resulting partial differential equations.

Once this resulting system of partial differential equations is
solved for the coefficients of S(u), equation (2.2) can be used to obtain

the function form of the solution.

SEMILINEAR HYPERBOLIC EQUATION

We consider the semilinear hyperbolic equation of the form
L(w) =u,, - fu) =0, 3.1
where f(u) is an aribitrary function of u For the case fu) =¢™ , n= 0
equation (3.1) becomes a field theoretic model {5]. For f(u) = u-u ,
equation (3.1) serves as a model of nonlinear meson theory of nuclear
forces [6] and in nonlinear theory of elementary particles [7]. For the
case f(u) = k, Sin u, where k; is a constant, equation (3.1) finds
applications in many areas of physics and mathematical sciences
including a coustics with special reference to propagation in
ferromagnetic materials of waves carrying rotations of direction of
magnetization, propagation of ultra short optical pulses, propagation in a
large Josephian junctions and propagation of crystal dislocation,
magnetic flux [8]. Further, equation (3.1) has been studied extensively
for geometric properties [9], for Bachlund transformations [10], for
Painleve analysis by many authors in the recent past, and particularly so
bv Clarkson et al [11} for the case
fu) = CrePot + CaePt 4 CiePir 4 Cye™®oe where C,, C,, C,. C, and
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B, are arbitrary constants and finally for isovector approach by Bhutani
et al [12] and new similarity method in [13].

4-DETERMINATION OF THE SOLUTION
In order to find the symmetries of the equation' (3.1), we set:

S(u) = A(x, t, uy% + B(x, , u)y2 + Clx, t,u) 4.1)
Calculating the Frechet derivative F(L, u, ) of L(u) in the direction of
y, given by equation (3.1), and replacing  in F by S(u), we get,

FL, u, S@) = [SW], - £'(w) [S@)]. (4.2)

Substituting the values of different derivatives of S(u) in the
resulting eqaution and calculating the coefficients of various powers of

the derivatives of u in F, we get a polynomial expansion in u,, u,, uu,,
... etc. On making use of equation (3.1) in the polynomial expression for
F, rearranging the terms of various powers of derivatives of u and

equating them to zero, we arrive at the following equations (see

Appendix A).
A=A(1), B=B(x)
C.=0, C,=0, C_.=o, A y (4.3)

C_-f/(m)C + (A+B+C)f(w) =0
On solving the system (4.3) for arbitrary form of the function
f(u) we find,

A= ;\(t)‘ B= B(X), C= Cl(xet): (44)

and
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C, -f'w)C,+(A,+B)fu)=0 (4.5)

In solving the system (4.4) - (4.5), we confine our attention to
the physically interesting situations wherein f(u) represent Liouville
equation, Phi-four equation, Sine-Gordon equation, Klein-Gordon
equation, Mikhailov equation, and Double Sine-Gordon equation. We
give below in tabular form, six different values of A, B, and C satisfying
the system of equations (4.4) - (4.5) for each of the six different forms

of the function f(u) and their corresponding invariants.

5. SIMILARITY SOLUTIONS AND REDUCTION
TO PAINLEVE FORMS:

Herein, we utilize the similarity variable £ and the corresponding
form of u tabulated in the above section for obtaining the ordinary
differential equations for n(&), for six different forms of the Semilinear
hyperbolic equation, given bélow.

5.1 Liouville Equation f(u) = ¢™, n= 0
Case I (Table 1, row 1). For the invarant transformation

corresponding to case under consideration, Liouville equation is reduced

to the following ordinary differential equation for n(¢).

am?-n"-nn=0. : (5.1.1)
Using the substitution

N =p, (5.1.2)
equation (5.1.1) gets transformed to

pp At - n =0, (5.1.3)

where in)= ~,—1] X A
The solution to equation (5.1.3) can be expressed as
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p2e?® = C+ nf e Wy, (5.1.4)
where

y(m) = [An)dn, | (5.1.5)

and C is a constant of integration.
Using the expression for f(n) in equation (5.1.5), the equation (5.1.5)
can be expressed as '

p*=Cn?~2nm. (5.1.6)
For the solution of equation (5.1.6) two possibilities arise
Case (i) C=0
Corresponding to this possibility 1y (£) can be expressed as

N(E) = —3mE+ &), (5.1.7)

where £, is a constant of integration.

Hence the required solution of Liouville equation is obtained as
(5.1.8)

2
-1 oz
ux =75 k’gt TOBEOG) -8 2
where ¢ (x) and ©O(t) are arbitrary functions of their respective

arguments. It may be mentioned that equation (5.1.8) represents a
known general solution to Liouville equation that coincides with the one
obtained bv Tamizhmani and Lakshmanan (1986) via Painleve anatysis
[14] and via new similarity technique [13] when n=1.
Case (1): C= 0

Corresponding to this possibility 1 (£) satisfies

nE) = —%—— , (5.1.9)
c{ sech? L2 (:+E,.o}

3
P

where &, another constant of integration.
Hence we get the following solution to Liouville equation. It

mav
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' C Sech? L?—(@(x)-e(t)m {

| 2B .
] ]

In equation (5.1.10) ¢(x) and 6(t) are arbitrary functions and C

Famnh
Ln
S
;—-d
<

N’

u(x, )= tlog

, &, arbitrary constants, and &/(x) = 55,0/(1) = L

It may be mentioned here that the solution (5.1.10) to Liouville equation
is completley new and does not seem to have been reported in the
litrature. Further, choosing, 6(f) = -log(1+ A2, O(x) = log(x + Ay and
& =log e , where A, A, and r arbitrary constants, we get

;]
Ay (5.1.11)
€

Equation (5.1.11) represents an exact solution of Liouville equation

reported by Bhutani et al (1992) [12] obtained via the isovector

1 1
u(x, 1) = 5 log -Z% @y S¢€° h?[log

approach.
5.2 phi-four equation: f(u) = w-u
Case II (table 1, row 2). Corresponding to this case the equation

(3.1) is reduced to the following ordinary differential equation.

g:—n”+n3—n:0. (3.2.1)
On solving equation (5.2.1), we arrive at the following form of
P : v \ .,
n=y2 Sech(~ 5 (E+E2)), (3.2.2)

where &. is a constant of integration.
In combining the equation (3.1) and (5.2.2) for the present case,

we obtain

~ far by -
u=y2 S€Chi—‘ fT(‘C“‘ZTf)*E’:J (523\
Lo¥
Eauation (5.2.3) represents a soliion type solution and has an

tmportance of its own.
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For the clear and quick insight into the results, the ordinary
differential equations and the solutions / reduced forms are presented in

tabular forms (table 2) for the last four cases in the table (1). Some of
the results obtained here are totally new whereas some of them are

known in the literature [13].
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Table (2)
’ Equation Ordinary Differential | Solutions / Reduced Forms
Equations
. (53) _ D v sinn =0 (Dw? = Koz (7 4 w) o cw?
Sine-Gordon 2 b,
Equation (5.3.1) e f(.5.3.3) .
: — o where C is a constant of integration.
if w= e L This equation is solvable in terms of
Equation (5.3.1) gets the elliptic Jacobian functions. So is of
transformed to Painleve type [15].
k,a 2-In the Case - a,k, = b,,c=2
ww’ -wR)+ 5952 (w3 -w)=0 280 23 :
( ) 2b, We obtain the exact solution
532
} ( ) | ulxt)=-2i log[tané—(x+ kot +€ )](5.3.4)
where &oa constant of integration.
this solution is completely new.
L4 - - =
(GS,4) . —.EJ'YIII=C‘=B°“+C1£1“U“+C3: Dﬂ‘hc‘e ot w' = "ijﬂo (ZC,W’ +c2w‘ ~2¢,w —C,) rew?
1 General rorm 3 ’
54.1
Of klein - . ( ) (5.4.3)
Gordon if w=elN Where ¢ is a constant of integration.
equation Equation (5.4.1) gets The solution of equation (5.4.3) can be
transformed to : expressed in terms of elliptic Jacobian
ww' w? =:—Eﬁl(c|w’ sew'sewes,). | function and so is of Painleve type .
(5.4.2)
5.5 ~b, - ) . -a,p .
g\/{ik?milov a: N =ce’ +cen Hw?= ‘: o (c,w* —2c,w)+cw
equation (5.5.1) (5.5.3)
i w=ein @) if b, =-a,B,,c=-3c,.¢;,=-¢,
Equation (5.5.1) gets and using ‘tlll?at)ransformahon
" transformed to : 9i(E) = ——22— . (5.5.4)
wi! - = Zabo (c;w' +c,w) w(g)+2
1 3 i
b, then we get :
(552 | p
o) =Yoo )
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when integrated yields :

-1 3¢,
0{E) = F—=tanh| ~— (& +
=7 L)
(5.5.5)
Then we have the following new exact
solution of Mikhailov equation .

'l—‘zscc\\l[fs;:(x gL+ ‘n))
2 +2sec‘n1(§(x P+ k)]

where k is an arbitrary constant.

Wz, L) = o

gets transformed to
ww! - Wl a

;;—;E—"—[c,(w’ - w) + cz(w‘ - l)}
(5.6.2)

(5.6) :—t—)iq” =¢sinP, n+e5in2B,n M

3 w” =:§5ﬁ—°(c|(w’ +w)+c~’(w4 +-l))+c:wz
Double (5.6.1) s 2
Sine-Gordon fw=ghn" ! (5.6.3)
equation then the equation (5.6.1) where ¢ is an arbitrary constant of

integration .
This equation is solvable in terms of
the elliptic- Jacobian functions and so
is of Painleve type .
(2) for the choices .
-a,B, =b;,c,=c,=2,and c=-6,
then using the transformation
7_

9*(k) = M (5.6.4)

w(E)+2+43

We get the ODE .

(5.6.5)
The solution of (5.6.5) obtained as :
3-43)
e(g)::( Wi g tanhif—(g +E,)

Where £, is a constant of integration .
Therefore a new exact solution to the
Double Sine-Gordon is given as :
(y?——l)—scch‘-';E(xd\.uk,)

Jo

+{2- Vihee! 3'(“951 ok,

a0} == oo
) i (\I. —-1

Where k, is an arbitrary constant.
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Appendix [A]

Substituting the values of different derivatives of S(u) in
equation (4.2) and collecting the coefficients of various powers of
ut, Uy, Ut, Uy, ...., etc,we get. ‘

F(L, u, S(w)) = (Axr+Cyu-AL\W) ugt(Cuy+Bxe-BA(W)ux
+ Axuux2+BxutCuutAut) UxttHAyuuxug
+ Buyugtix 2By HArFBx+HColupcH-Axugt
+ AyuxutZAgutugx tByutthyx t2Byuxutg
+ Auty+Bupoct Cxe-P()C.

Using the equation (3.1) in (al) and replacing utx byy f(u), utty by

A\(u)ut and upex by f(u)uy, we get:

F(L, u,S(w) = [Cyt+Bxc+2Buflw)lux
HAxt+HCxut2Af(W)]ut
HBxutAuttCuuluxut
B2y FAxyuletAyyuxude

+Byyutu 2yt Bruxx+Axutt
+AyuyutrByuguxxt Cxe- N C(AH+HBy+Cyf(u)-(A2).

it
[+))
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