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Herern rile p&s~cal[v -and mathematically slngnlficant 

remrhneor hyperboirc equation Uxr  = f l u ) ,  where f(u) is an orbirrmy 

smooth functrnn of u and which encompasses Liouvrlle equarion. 
F 

phi-falr equation. Sine-Gordon equation, Klern-Gordon equation, 

~Lfilchailov equarion and Double Sine-Gordon equution, hm been 
w 

analwed via the .yvmnzetry method as developed by Stemberg [I-/. The 

ininitesimals, similarity variables, dependent variables and reduction 

to yztudrature or ewct solutions have been tabulated for the mentioned 

physical f oms  of f(u). Some interesting outcomes of this stuLh, are the 

deduction of the new emct solutions that does not seem ro have been 

reported in the literature. 

+ INTRODUCTION 

Ever since the work of Birkhoff [2 ]  on " the method of search 

for symetsic solutions " the technique of similarity transformation has 

turned out ro be one of the most powerful rechmqraes for sohing 

non-hear &iereilrial eqmtions. Its application has rzsulted in a l q e  

number of sotutions of the equations ori@nating mostly in the redm of 



continuum mechanics. Nevertheless, the technique could not become as 

popular as the corresponding technique of variable separable form and 

Laplace transform technique for solving linear differential equations, 

this could be due to the following reasons [3,4] :- d 

(i) The ma& apparatus of the Lie group theory concept could not be 

made algorithmic. A 

(5) The Lie group analysis based on tranrformation theory of 

differential equations, though a powediil and systematic approach, for 

obtaining the similarity solutions of linear or nonlinear, ordinary or 

partial differential equations could not be easdy exploited for differential 

equations of hgher order and for a system of partial differential -, 

equations which is must for most of the physical and engineering 

situations. - 
(iii) No link could be established with the corresponding technique of 

variable separable form for sofving linear differential equations. 

Consequentiy, an attempt had to be made for devising a 

techque which could take care of all the above features and yield 

many more new solutions than the conventional similarity 

transformation tecLhique. One such technique is that of symmetry 

method due to Stein'lerg (1979). Undoubtedly, the technique involves 

very sophisticated tools of the theory of non-linear operators. Yef it has Z 

been irist in a form that is easy to utdize by specirllists or non-speciahsts 

dike. , 

Efereh, n-~il have utilized the s ~ r n s t r y  method to generate new 

si1TU1a1-i~ s~liltions of important class of ecptions-senulinex hyperbolic 

c rp r i~ns .  This h s  resulted in? for physicah reali~blt:  forms of the 
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function of dependent variable involved, a number of new solutions of 

the corresponding differential equations, either by reducing them to 

standard Paideve forms or by solving them exactly. Some interesting 

4 outcomes of this study are the deductions of new exact solutions of 

Liouville equation, Sine-Gordon equation, Mikhailov equation, Double 
L 

Sine-Gordon and the generalized form of the Klein-Gordon equation. 

SYMMETRY iMETHOD 

,4s pointed out above herein we briefly outline Steinbq's 

% (1979) similarity method of finding explicit solutions of both linear and 

nonlinear partial differential equations. The method is based on fin- 
e the symmetries of the differential equation and is as follows:- 

Suppose that the differential operator L can be written in the 

form: L(u) = $ - H(P). (2.1) 

where u=u(x,t) and H may depend on x,t,u and any derivative of u as 

long as the derivative of u does not contain more than p-1, t derivatives. 

Consider the symmetry operator called infinitesimal symmetry, which 

being quasilinear partial differential operator of hrst order, have the 

Define the Frechtet derivative of y u )  by 
,, F ( L , U , V ) = :  ~ ( n i n ; )  L (2.3) 

&=o 
-with these definitions in mind we need to foldow the following steps: 

(i) Compute F(L. 4 v). 

(a) Compute F(L, u, s(u)). 
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af'u 
(iii) Substitute H(u) for in F(L, u, S(u)). 

(iv) Set this expression to zero and perform a polynomial expansion. 

(v) Solve the resulting partial merential equations. 

Once this resulting system of partial differential equations is 

solved for the coefficients of S(u), equation (2.2) ccm be used to obtain 

the function form of the solution. 

SETvDLINEAR HYPERBOLIC EQUATION 

We consider the semilinear hyperbolic equation of the form 

L(u) = 7.2, - f(u) = 0, (3.1) 

where f(u) is an aribitrary fimction of u. For the case f(u) = em , n -- 0 

equation (3.1) becomes a field theofetic model [ 5 ] .  For f(u) = u3 - u _ 
equation (3.1) serves as a model of nonlinear meson theory of nuciew 

forces [6] and in nonlinear theory of elementary particles [7]. For the 

case f(u) = ko Sin u, where ko is a constant, equation (3.1) finds 

applications in many areas of physics and mathematical sciences 

including a coustics with special reference to propagation in 

ferromagnetic materials of waves carrying rotations of clirection of 

magnetization, propagation of ultra short optical pulses, propagation in a 

large Josephian junctions and propagation of crystal dislocation, 

magnetic flus [8]. Further, equation (3.1) has been studied estensively 

for geometric properties [9], for Bachlund transformations [lO], for 

Painleve an,zlysis by many aufhors in fhe recent past, and yarticular& so 

by Clnrkson et al C l l f  for the C~?SI: 

Au) = C ~ B P O ~  t C:L?~P@ + c ~ ~ - @ o ~  + c.IL?-?~~o" where C1: C7: a C3. C4 2nd 



Po are arbitrary constants and finally for isovector approach by Bhutani 

et a1 [12] and new simiIarity method in [13]. 

4-DETERMINATION OF THE SOLLTION 

In order to find the symmetries of the equation (3. I), we set: 

du du S(u) = A(x, t, u ) ~  + B(x, t, u ) ~  + C(x, t, u j . (4.1) 
Calculating the Frechet derivative F(L, u, yr) of L(uj in the direction of 
\y, given by equation (3. I), and replacing q~ in F by S(u), we get, 

Substituting the values of different derivatives of S(u) in the 

'e resulting eqaution and calculating the coefficients of various powers of 

the derivatives of u in F, we get a polynomial expansion in u,, 5, %I+, 

. . . etc. On making use of equation (3.1) in the polynomial expression for 

F, remanging the terms of various powers of derivatives of u and 

equating them to zero, we arrive at the follonkg equations (see 

Appendix A). 

A=A(t), B=B(x) 

C", = 0, Cut = 0, C, = 0, I (4.3) 

~ ; f  ' ( u ) ~  + (A,+B,+CJf(u) = 0 

On sohing the system (4.3) for arbitrq fmn of the fimction - 
f(u) FV2 find, 



Ln solving the system (4.4) - (4.5), we confrne our attention to 

the physically interesting situations wherein f(u) represent Liowille 

equation, Phi-four equation, Sine-Gordon equation, Klein-Gordon 

equation, h4lihailov equation, and Double Sine-Gordon equation. U'e 

give below in tabular form, six Werent values of A, B, and C satisfying 

the system of equations (4.4) - (4.5) for each of the six different forms 

of the function f(u) and their corresponding invariants. 

5. S n i x L m T Y  SOLUT~ONS AW RED~CTIO~J  
TO PAINLEVE FORMS: 

Herein, we utilize the similarity variable and the corresponding 
-. 

form of u tabulated in the above section for obtaining the ordinary 

differential equations for q (t), for six different forms of the Semilinear 

hyperbolic equation, given below. 

5.1 Louville Equation f(u) = em, n 0 

Case I (Table I, row I). For the invariant transformation 

corresponding to case under consideration, Lioudle equation is reduced 

to the foIlorving ordinary differential equation for q (5). 
l 2  qT-p-7 - n q  =o. 

Using the substitution 

11 = P  3 

equation (5.1.1) gets trmsfonned to 

~ ~ 7 1 :  Tj(11 jji2 - 12 = 0,  (5.1.3) 

where 1 A111 =-ij . 
The solution to quation (5.1.3) can be expressed as 



where 

r h )  = SArlkh, (5.1.5) 
I and C is a constant of integration 

Using the expression for f(q) in equation (5.1.5), the equation (5.1.5) 
4 

can be expressed as 

For the solution of equation (5.1.6) two possibilities arise 

Corresponding to this possibility q (5) can be expressed as 

~ ( 5 )  =-!n(~+ t o ) ' ,  (5.1.7) 

where jo is a constant of integration. 

Hence the required solution of L i o d e  equation is obtained as 

arguments. It may be mentioned that equation (5.1.8) represents a 

known general solution to Liowille equation that coincides with the one 

obtained by Tamizhmani and Lakshmanart (1986) via Painleve analysis 

I l l ]  and via new similarity technique [I31 when n= 1. 

@ Case (ii): C = 0 
Corresponding to this possibility 71 (5) satisfies 

where anoher constant of integration. 

Hence we get the following solution to Liouwllt: equation. It 

may 



Zn equation (5.1.10) +(x) and Bit) are arbitrary functions and C 
1 5 ,  arbitrary constants, and Qf(x)  = &, of (1) = 3. 

r 

It may be mentioned here that the solution (5.1.10) to Liomille equation 

is completley new and does not seem to have been reported in the ,. 
lih;lNre. Further, choosing, 0(t)  = -log{l+ hz);, Qxj = loge( x+ Ll and 

1 5 1 = log C-7 , where A,, L, and r arbitrary constants, we get 

1 1 sec h2 [log (5.1.11) 

Equation (5.1.1 1) represents an exact solution of Lioutffle equation 

reported by Bhutani et a1 (1992) [12] obtained via the isovector 

approach. 

5.2 phi-four equation: f(u) = u3 - u. 
Case II (table I, row 2). Corresponding to tfus case the equation 

(3.1) is rzduced to the foilowing ordin'ary differen&d equation. 
bl N 3 - q  a!  + q  - q = O .  (5.2.1) 

On solving equation (5.2. I), we arrive at the follotvjng form of 

where & - is a constant of integration. 

In coinbining the equation (3.1) and (5.2.2) for the presenr case. d 

we obtain 



For the clear and quick insight into the results, the ordinary 

differential equations and the solutions / reduced forms are presented in 
a 

tabular forms (table 2) for the last four cases in the table (I). Some of 

the results obtained here are totally new whereas some of them are . 
known in the literature 1131. 
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-- 

Equation 

(5.3) 
SineGordon 
Equation 

( 5 . 4 )  
General form 
Of klein - 
Gordon 
equation 

(5 .5 )  
hii khailov 
equation 

Table ( 
Ordinary Differential 
Equations 

'% --q'+k,~;nq=O 
a, 

(5.3.1) 

if w= e h  
Equation (5.3.1) gets 
transformed to 
(ww/ /  -wq+ koa2 ( w ' - W ) = O  

26- 
(5.3.2) 

if m;= elrl 
Equation (5.4. I )  gets 
transformed to : 
w v " - a ' = 3 r 1 1 ( ~ , w ~ + C , W ~ + c , W + c ' ) .  

b, 

if w= e h  
Equation (5.5. I )  gets 
transforn~ed to : 

- a A  W , d l  -,v= = -(c2w1 +c]w) 
b, 

L 
Solutions / Reduced Forms 

(5.3.3) 
where C is a constant of integration. 
This equation is solvable in terms of 
the elliptic Jacobian functions. So is of 
Painleve type [IS]. 
2-111 the Case - a,k, = b, , c  = 2. 
We obtain the exact solution 

where 5 =, a constant of integration. 

this solution is completely new. 

w" =342c,w' +c,w4 - 2 c p - c , )  tc\v1 
b, 

(5.4.3) 
Where c is a constant of integration. 
The solution of equation (5.4.3) can be 
expressed in terms of elliptic Jacobian 
function and so is of Painleve type . 

(5.5.3) 
(2) if b4 = -a,Po,c = -3c,, c, = -c,  
and using the transformation 

then we get : - 



'5.6) 

3ouble 
Sine-Gordon 
:quation 

(5.61) 
f = eiB. 'l 

lien the equation (5.6.1) 
Zets transformed to : 

- @- 

*[.~d -*)+c,(w4 -I)]. 
2b, 

(5.6.2) 

(5.5.5) 
Tl~en we have the following new exact 

of Mkhailov equation . 

where k is an arbitrary constant. 

(5.6.3) 
where c is an arbitrary constant of 
integration . 
This equation is solvable in ternls of 
the elliptic- Jacobian functions and so 
is of Painleve type . 
(2) for the choices. 
-a$, = b5,c, = c2 = 2 ,  and c=-6 , 
thcn using the transformation 

We get the ODE . 

2@(<) = 4 +f i ) [02k)  -q 
(5 .6 .5)  

The solution of (5.6.5) obtained as : 

Where 5, is a constant of integration . 
Therefore a new cxact solution to the 

wen as : Double Sine-Gordon is b' - 
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Appendix [A] 

Substituting the values of different derivatives of S(u) in 

equation (4.2) and collecting the coeficients of various powers of 




