Mathematics (1). Final First Term Mansoura University Preparatory Year. Faculty of Engineering Exam. Eng. Math. and Phys. Time allowed: 3 Hours. 2010-2011 Dept. Full Mark: 130

Algebra

Question.1 [33 marks]

(a) If $z^2 = -1 + i\sqrt{3}$, then evaluate:

[9 Marks]

(i)
$$3z + 4$$

(i)
$$3z + 4$$
 (ii) z^6 (iii) $\frac{z^2 + 1}{2 + i}$

(b) Decompose the fraction $\frac{2x-1}{x^4-x^3-5x^2-x-6}$ into its partial fractions. [12 Marks]

(c) Find the roots of the equation $16x^4 - 64x^3 + 56x^2 + 16x - 15 = 0$ if they form arithmetic [12 Marks] sequence.

Question.2 [37 marks]

- (a) Suppose A and B are 4×4 matrices with $\det A = 5$ and $\det (AB^{-1}) = 2$. Then; [15 Marks]
 - (i) prove that the matrix AB is nonsingular.
 - (ii) prove that the matrix AA^T is symmetric.
 - (iii) evaluate $det(3A^T)$ and $det(B^2)$.

(b) Find the inverse of the matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ -a & a & 0 \\ 0 & -a & a \end{bmatrix}$$
.

[7 Marks]

(c) Discuss the type of the solution for the following linear system;

[15 Marks]

$$x - y + 2z = 4$$

$$3x + 2y + z = 7$$

$$2x + 3y - z = 3$$

$$x - 6y + 7z = 9$$

Question 3:

- [a] Sketch the function $f(x) = \cos x$ for $0 \le x \le \pi$. For the interval $0 \le x \le \pi$, find and sketch $\frac{1}{f(x)}$, $f^{-1}(x)$ and $\frac{df(x)}{dx}$. [8 marks]
- [b] Find the constants a and b for which the following function is continuous for all values of x

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2} & x < 0\\ ax + b & 0 \le x \le \pi\\ \frac{\sin x}{\pi - x} & x > \pi \end{cases}$$
 [8 marks]

- [c] Prove that : $\operatorname{cosech}^{-1} x = \ln \left(\frac{1 + \sqrt{1 + x^2}}{x} \right)$ [6 marks]
- [d] Solve for : $\csc(2x) = 2 + \ln\left(\frac{1}{\csc^2 x} + e^{2\ln(\cos x)}\right)$ [6 marks]

Question 4:

- [a] Find $\frac{dy}{dx}$ for: (i) $y = \tan^5(e^{\sinh x}) + \sin^{-1}(\sqrt{\operatorname{sech} x})$ [6 marks]
 - (ii) $y = \sqrt{\frac{x e^{x^3}}{(\sec^{-1} x)(x^2+1)^7}}$ [6 marks]
 - (iii) $y = 4^{\tanh^{-1}x} + (x)^{\cosh x}$. [6 marks]
 - [b] (i) What is the equation of tangent to the circle $x^2 + y^2 + 2x + 2y 11 = 0$ at the point (1,2)?
 - (ii) Calculate the slope of the normal line to the curve whose parametric equations are $y = t^4 + 2t + 1$ and $x = 2t^3 + 3t^2 + 1$ at t = 1. [6 marks]
 - [c] Evaluate the limit (if it exists):
 - (i) $\lim_{x \to 0} \left(\frac{1}{\sinh x} \frac{1}{x^2} \right)$ (ii) $\lim_{x \to e} (\ln x)^{\frac{1}{x e}}$ [8 marks]
 - [d] Find the second order Maclourin series of the function $f(x) = e^{x^2}$. [6 marks]

With our best wishes