Mansoura University

Irrig. And Hydr. Engineering Dept. Faculty of

Engineering

Total Marks: 100 Marks

Course Title: Design of Irrigation Works (I)

15 January 2013 (First term)

Course Code: IRH8211
Allowed time: 4 hrs

Year: 3rd Civil

No. of Pages: (3)

Remarks:

Date:

• Answer the following questions.

• All answers should be supported by clear, net and well proportional sketches.

Any missing data may be reasonably assumed.

Question (1)

[18 marks]

The opposite figure shows a reinforced concrete counterfort abutment. When the allowable bearing capacity of soil is **1.60** kg/cm^2 and the sliding coefficient μ = **0.60**, it

(E includes water pressure)

is required to:

- Check stability of the wall against sliding, overturning and stresses. (6 marks)
- Calculate the reinforcements of vertical slab, base slab and web. (6 marks)
- Sketch clearly detailing reinforcement of the wall. (6 marks)

Question (2) [17 marks]

At the crossing of a roadway 10.0 ms width and (14.25)m level with a canal showing in figure, a R.C box type culvert is required to be constructed at this crossing according to the following data:

- Maximum allowable heading up = 10 cm
- Manning Coeff. for concrete= 0.02

It is required to:

- 1) Design the culvert hydraulically (open channel hydraulic system). (5 marks)
- 2) Calculate different loads acting on the culvert for all possible cases of loading. (6 marks)
- 3) Draw to proportional scale a fully dimensioned <u>Sectional Elevation</u> from center line of a vent. (6 marks)

Question (3)

[30 marks]

- 3-a) Discuss classification of bridges according to structural form with net and clear sketches? (4 marks)
- 3-b) Explain briefly the four components of bridge scour, and note how to determine the total scour depth? (4 marks)
- 3-c) The following figure represents a double cantilever reinforced concrete slab and T-girder bridge that will be constructed according to the following data:

Egyptian Code-Loading (20 ton lorry + U.L.L of 400 Kg/m²).

Main Girder: Double cantilever beam

pier thickness = 1.50 m

Road width: 10 meters (8 m auto way m + 2 m sidewalks).

Canal side slopes, 1:1 and 3:2

Wearing Surface = 2.20 t/m³,

P.C. = 2.20 t/m^3 , R.C. = 2.50 t/m^3

Allowable bearing capacity of soil: 1.8 kg/cm²

Maximum allowable heading up: 10 cm Allowable waterway contraction: 30%

Required:

- 1. Perform the hydraulic design process including waterway dimension, contraction (4 marks) requirements, controlling heading up.
- 2. Estimate the equilibrium pier scour depth (mean size diameter of soil particle is 0.80 mm).

(3 marks)

- 3. Design the main girder, and sketch net and clear its reinforcements. (6 marks)
- 4. Check the maximum normal stresses on soil from the pier. (4 marks)
- 5. Draw to proportional scale a fully dimensioned P.H.E.R (5marks)

Question (4)

[17 marks]

- 4.a) If the length of overhanging part of an aqueduct is 50 ms, where you suggest to support this part (you have two supports)? (4 marks)
- 4.b) With the aid of a longitudinal cross-section of a syphon, explain briefly the components of head lost.

(4 marks)

- 4.c) Two steel pipes 1.75 diameter aqueduct is to be constructed at the intersection between the given drain and canal.
 - 1. Design the aqueduct hydraulically.

(4 marks)

2. Draw the U.S section elevation of the aqueduct. (5marks)

Question (5)

[18 marks]

5.a) Show with clear and well finished sketches how can you control the canal water level in the following cases:

i). At the end of the canal

(2 marks)

ii). If the flow of the canal pass through an aqueduct over a drain

(2 marks)

- iii). If the canal passes over an inverted box type syphon which pass a drain flow underneath the canal (2marks)
- **5.b)** At the end of canal, a Tail Escape is required to be constructed to escape the excess water from the canal to a branch drain provided that the water level in the canal does not exceed 20 cm. Following data are available.

diameter of orifice pipe =0.60m and internal diameter of well=1.50m. Length of last reach = 3.0 Km

	<u>Canal</u>	Drain
Bed width	3.0 m	4.0 m
Bed level	(9.50) m	$(6.75) \mathrm{m}$
High water level	(11.00) m	$(8.75) \mathrm{m}$
Berm level	(11.30) m	(10.80) m
Bank level	(12.30) m	(12.30) m
Bank width	6.0 m	8.0 m
Side slopes	1:1	3:2
Water surface slope	10 cm / Km	9 cm / Km

1. Check the design for the elements of the structure.

(6 marks)

2. Draw fully dimensioned sketches for Sectional Elevation of the structure. (6 marks)

Good Luck

Course Examination Committee

PROF. DR. ADEL EL-MASRY

DR.-ING. REDA DIAB

DR. SAMY KHALAF