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Abstract: The thermophoretic translational motion of an aerosol circular cylindrical 

object embedded in a gaseous microstructure (micropolar) fluid in the presence of a 

constant known temperature gradient perpendicular to the axis of the object is 

investigated analytically. The following assumptions are made: the dissipation function 

of mechanical energy is neglected, Péclet number is low, the flow is under creeping 

assumption, and the Knudsen number is supposed to be low such that the fluid flow can 

be treated as a continuum medium. The heat stress slippage is considered in the 

analysis of motion in addition to the frictional and creeping slips. The thermophoretic 

migration of the object is found in a closed form. The effect of micropolarity 

coefficient on the motion of the particle is discussed and compared with the limiting 

case of classical viscous fluids.  It is found that significant effects on the 

thermophoretic velocity due to microrotation thermal conductivity coefficient and 

particle’s shape. 
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1.Introduction

When a heated metal rod immersed in a 

smoke, we observe that the smoke particles 

being pushed away, and a particle-free zone is 

seen, Tyndall [1]. Physically this phenomenon 

is known as thermophoresis.  It is a force 

caused from a temperature difference colonized 

in the gaseous medium. An object in that 

temperature difference produces a force 

directed along a direction in which the 

temperature decreases. The thermophoretic 

force has practical importance in deposition 

applications, e.g., thermophoresis can be very 

useful in elimination or compiling tiny objects 

from fluid streams, in air purification and 

aerosol sampling equipment [2, 3]. 

Thermophoresis is one of the important 

techniques employed to discrete various 

polymer objects in field flow fractionation. In 

addition, thermophoresis has been used as a 

flexible method for treating single biological 

macro-molecules, such as genomic-

length DNA, and HIV virus  in micro- and 

nano-channels [4]. Many other applications are 

cited in [5 - 10]. Most of the work on 

thermophoresis were restricted to spherical 

particles under low Péclet and Knudsen 

numbers assumptions in the case of creeping 

flow conditions and taking into account 

temperature jump, heat creep, thermal stress 

slip, and mechanical slippage at the object 

surface. Chang and Keh [11] found the 

thermophoretic mobility of a spherical object in 

a uniformly prescribed temperature difference 

and studied the effect of heat stress slippage on 

the motion of the particle. Li and Keh [12] 

treated the problem of thermophoresis of a 

spherical object moving along the central line 

of a microtube. Previous studies are constrained 

to Newtonian classical viscous fluids; however 

few works are found in the literature investigate 

the class of micropolar fluids. Saad, Faltas [13] 

investigated three related problems of 

thermophoresis of a spherical object immersed 

in a gaseous microstructure medium  and found 

expressions for thermophoretic mobilities  and 

forces in terms of the micropolarity parameter 

characterizing the micropolar medium and the 

heat properties of the fluid and object. In 

https://synonyms.reverso.net/%D9%85%D8%B1%D8%A7%D8%AF%D9%81%D8%A7%D8%AA/en/compiling
https://en.wikipedia.org/wiki/Field_flow_fractionation
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/HIV
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addition, Faltas and Ragab [14] found 

expressions for thermophoretic mobilities and 

photophoretic forces of a spherical object 

immersed in a porous medium as functions of 

the Brinkman number characterizing the 

permeability of the medium and the thermal 

properties of the porous medium and particle. 

The limiting cases of clear fluid and Darcy’s 

flow besides the case of no-slippage are also 

discussed. 

In practice most aerosol particles are non-

spherical; therefore, it is important to study the 

effect of particle shape on thermophoresis, [15-

20]. Chang and Keh [21] analyzed the problem 

of thermophoresis and photophoresis of an 

aerosol cylindrical particle moves 

perpendicular to its axis in the slip-flow system. 

They calculated the thermophoretic velocity of 

the particle in an unbounded gas possessing a 

uniform temperature difference
T

 as 

,U A T  
 (1.1) 

where the thermophoretic mobility 
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 (1.2) 

In equation (1.2) k , , ,  and are the heat 

conductivity, density, and viscosity, 

respectively, of the bulk medium; 1k
  is the 

heat conductivity of the object; 0T
 is a scale  

temperature and 
, , ,s t mC C C

and hC
 denote to 

dimensionless coefficients of heat creep 

slippage, temperature jump, mechanical 

slippage and heat stress slippage, respectively, 

at the surface of the object.  is the mean free 

path of fluid molecule, and a is the radius of 

the sphere 

The well-established Navier- Stokes 

equations of the Newtonian fluids has a 

limitation in describing complex fluids such as 

colloidal, suspensions and emulsion systems. 

Eringen [22] initiated the theory of micropolar 

fluids with microstructure, which is a well-

founded and significant generalisation of the 

classical model of Navier- Stokes equations and 

covering both in theory and applications. 

Several experiments show, the micropolar 

model better represents behavior of various real 

fluids, especially when the characteristic 

dimension of the flow is small. The motion of a 

microstructure (micropolar) fluid is described 

by two essential qualities: the usual velocity 

which identify the motion of macro- elements 

and the microrotation angular velocity which 

describe the rotation of micro-elements. 

Numerous studies have been found in the 

literature for the subject of thermal conductivity 

of micro structured fluids. The subject of the 

heat conductivity of micropolar fluids were also 

developed by Eringen [23] and reviewed by 

Migun and Prokhorenko [24]. 

In this work, we consider an exact treatment 

of the thermophoresis of a circular cylindrical 

particle embedded in a gaseous micropolar 

infinite medium in the slippage-flow regime 

under the action of a temperature difference 

along a line perpendicular to the axis of the 

object. An explicit formula for the 

thermophoretic velocity of the cylindrical 

object given by expression (1.1) rectified with 

the micropolarity effect is obtained.  

2. Governing Model   

In the following analysis, the conservation 

of mass, linear momentum, angular momentum 

lows and conservation of energy for the steady 

flow of an incompressible micropolar fluid 

under the assumptions of low Péclet number  

and creeping flow conditions, neglecting the 

body forces, and couples and also thermal 

sources  are given by [22, 23]: 

0,q   (2.1) 
( ) 0,p q        (2.2) 

 

( ) 2 0,q      

 (2.3) 
0,k T     (2.4) 

where , ,q   and p  are, respectively, the 

density, local velocity, micro - angular velocity 

and the dynamic pressure for micropolar 

medium.   is a material coefficient and   is a 

vortex second material coefficient,  and   are 

spin material parameter and  is the shear spin 

material parameter.   denotes to the density 

dissipation function due to mechanical energy; 

its description can be found in [25] and k  is 

the classical thermal conduction factor.  Here in 
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our analysis of thermophoresis, we neglect the 

effect of   since all its terms are of second 

order and consider the thermal conductivity 

factor k , is uniform throughout the medium. 

Moreover, if the motion of the micropolar fluid 

elements are slow and the size of the aerosol 

particle is small, then all inertia terms in the 

involved fluid equations and energy equations 

are neglected. In that situation, the transport of 

thermal energy between the micropolar medium 

and the cylindrical object is basically through 

thermal conduction. Therefore, the temperature 

of fluid medium satisfies Laplace’s equation, 

which is the same equation for classical viscous 

fluids under the same physical consideration. 

The stress dyadic tensor,  of the 

micropolar flow is a nonsymmetric dyadic and 

is given by the following constitutive relation: 

    *1
2

2 ,pI q q             
 

(2.5) 

where star denotes to the transpose of a 

quantity, 
1
2
curl q

  denotes to the vorticity 

of the fluid, I is the unit tensor, and  is the 

permutation tensor. The symmetric part of the 

stress tensor   in (2.6) is: 

    *1
2

,
S

pI q q        
 (2.6) 

The symmetric tensor 
 S

  coincides with 

the stress tensor of the Newtonian viscous 

fluids, where 
1
2v   

 refers to the usual 

viscosity material coefficient of the classical 

viscous fluid [26].   Generally, the material 

viscosity factor  in the field equation (2.2) is 

not equal to the material viscosity of the 

classical viscous Stokes fluid, v . They are the 

same 
 v 

only if   vanishes. In this 

situation, equation (2.2) reduces to the 

Newtonian viscous case and reduces equation 

(2.5) for the stress dyadic into the usual 

equation of the stress dyadic of viscous fluid 

[27]. The couple stress dyadic, m  and the 

thermal vector, E  are given by the expressions: 

 
2

1 *

4

0

,m T I
a T

   
      



 (2.7) 

 1 0 ,E k T T    
 (2.8) 

where 0T
  denotes to a typical temperature 

value, a  is a typical length and 1  is a thermal 

conductivity factor due to microrotation. Note 

that, the appropriate quantities multiplied by 1

in the above relations are to balance the 

dimensional scale. It is a matter of importance 

to observe that the couple stress dyadic and the 

thermal vector relations (2.7) and (2.8) involve 

the new terms T  and   respectively [28]. 

Each of these terms multiplied by 1 which 

shows that a possible production of thermal 

energy due the rotation of micro-elements. 

3. Mechanical and thermal slip regimes   

The “frictional slippage” or the “viscous 

slip” means the possibility that fluid may slip at 

the surface of a solid boundary.  This condition 

assumes that the relative tangential velocity of a 

fluid at a solid boundary is proportional with 

the tangential stress. The constant of 

proportionality is known as slippage friction; it 

depends on the physical properties of the fluid 

and solid boundary. For the micropolar fluids, 

an appropriate general form of this condition 

can be written in the form 

1

2
( ) ( ),

2

mC
q I nn n


   

   (3.1) 

Here n  is the outward unit normal vector at 

the surface of the immersed object and  refers 

to mean free path of a molecule in a fluid 

element. The non- dimensional quantity, mC
is 

in a relation with the momentum 

accommodation parameter at the solid 

boundary [29]. The laboratory data and 

analytical investigations show that it depends 

on the type of the surface and the surrounding 

fluid and its value in the range of 1.0–1.5 [30, 

31]. The fact that the gas or fluid molecules 

which are in contact with the surface of the 

immersed object can slip appears in various 

physical circumstances  such as the rarefied gas 

stream around a colloidal particle [32–33], the 

aqueous fluid stream in touch with a 

hydrophobic surface [34–36], the micropolar 

fluid stream surrounding a rigid object [37], 

and the viscous fluid stream around the surface 
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of a porous particle [38,39] or a microparticle 

of molecular size [40], have been settled 

experimentally. 

A second velocity slip, called “creeping 

slip”, appears when the solid and the adjacent 

fluid affected by a temperature gradient.  This 

velocity slip can be expressed for micropolar as 

 

2

0

(2 )
( ) ,

2

sC
q I nn E

T k

  
   


 (3.2)  

where sC
 is called the heat creep factor and 

its value ranges around 1. The creeping velocity 

slippage expresses heat creep stream that is 

produced by the longitudinal temperature 

difference around the surface of the object. The 

creeping velocity slip is important and included 

in many physical applications such as gas flow 

through vacuum equipment and microchannel 

[41]. 

In addition to the above velocity slips there 

is a third velocity slip named as heat stress slip; 

its expression for micropolar fluids is 

 
3

0

(2 )
( ) ( ).

2

h
m

C
q C I nn n E

T k

 
    


 (3.3)  

Here the coefficient hC
  is named as the heat 

stress slip and its estimated value around 1. It 

should be noted that the coefficient hC
 will be 

eliminated if the viscous slippage mC
 equals 

zero. This condition was initiated by Sone [42] 

and reviewed by Bakanov [43] in his analytical 

investigations of thermophoretic bodies of high 

thermal conduction. It is obvious from 

condition (3.3), this velocity slip is proportional 

to the tangential rate in the normal temperature 

difference.  In fact, the early studies of 

Maxwell [44] suggested a refinement heat 

stress term in the slippage-flow equation, but it 

has been cancelled over time, possibly due to 

its less importance in total of slippage effects. 

Some authors tested the usefulness of heat 

stress versus the studies neglecting this effect 

[11, 45, 46].   They concluded that the 

thermophoretic forces applied on the object are 

in perfect agreement with laboratory data in 

comparison with the results obtained by Brock 

[47] and Mackowski [48] in the absence of 

heatstress slip. 

In association with the frictional stress slip, 

Saad and Faltas [13] proposed an appropriate 

general condition for the spin slip, s at the 

surface of the solid object in the form  

 

( ) ( m),n
s

C
I nn n


    

  (3.4) 

Here, again nC
is a dimensionless frictional spin 

slippage coefficient.  The actual values of nC
 

are not determined yet experimentally. 

However, we expect that its value around the 

values of mC
. In general, nC

 is not the same as 

mC
 

 

4.Mathematical formulation of 

thermophores problem   

Consider a two-dimensional case of a 

thermophoresis of a long circular cylindrical 

object. The radius of the cylinder is denoted by

a  with heat conductivity pk
 , The cylinder 

embedded in an infinite micropolar region. Let

1,k 
 represent the heat conductivities of the 

micropolar fluid region. The origin of the 

Cartesian  and cylindrical frame of reference 

 , ,x y z
and

 , , ,r z
 respectively, is located at 

the center of the cross section of the object with 

corresponding unit vectors 
 , , zi j e
r r r

and

 , ,r ze e e

r r r

. The cylindrical particle is moving 

perpendicular to z  axis (the axis of cylinder) 

with constant velocity U i
r

 (U is unknown).  

Allowing for mechanical and heat slips at the 

surface of the cylinder. The resulting motion is 

steady.  At infinity, we impose a uniform 

temperature difference, 
 T E i   

r

, 

 in which
0E 

 (see Fig.1). Our purpose in 

this paper is to calculate the thermophoretic 

mobility of the object including the mechanical 

slippage term given by (3.1), heat creep term 

given by (3.2), heat stress slip term  given by 

(3.3), besides to the mechanical spin slippage 

term.  
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Fig. (1): Coordinate graph of th 

thermophoresis of cylindrical object 

Obviously, the temperature
T  far from the 

object, is as follows, 

   0  , cosT x T E x x r    
 (4.1)  

Here 0T
 is a known constant. The quantity 

0/aE T  is named Epstein coefficient. In 

practical, this coefficient has a low value [49].  

 The main aim of this article is to examine   

the effect of the micropolar medium, on the 

thermophoretic mobility of the object. 

Analysis of stream function: 

In the case of two dimensional motion  of an 

incompressible micropolar fluid, the velocity 

and microrotation vectors are of the form 

 , ,r rq r q e q e   
  (4.2) 

( , ) .zr e   
            (4.3) 

From the incompressibility equation (2.2), it 

is convenient to let the components
 ,rq q   of 

velocity such that  

1
, ,rq q

r r


 
 

   (4.4) 

where  is Stokes’s stream function. 

Substitute from (4.2) - (4.4) into the flow 

equations (2.2) and (2.3), we get 

2

,
p

r r r

       
 

      (4.5)  

 
21

,
p

r r r

   
     

       (4.6)  

2 22 0,       
 (4.7) 

where

2 2
2

2 2 2

1 1
.

r r r r

  
   

     

The governing system of equations can be 

further reduced to the following equations for 
  and  : 

 4 2 2 0 ,    
 (4.8) 

 2 21
1 22

2 ,       
 (4.9) 

where, 

    2 2 2 / , 1 /a          
 

1 2 ,   
…….. (4.10) 

4

1 0,  
      ……. (4.11) 

 2 2

2 0.   
     (4.12) 

The general solutions of equations (4.11) and 

(4.12), which are appropriate to the present 

problem, are given respectively by 

 1 3

1 1 2 1 2 ln sin ,a r a r c r c r r     
 (4.13) 

    2 1 1 2 1 sin ,b K r b I r   
 (4.14) 

where the functions 
,n nI K

 are the modified 

Bessel of the first and second kind of order n .  

The unknown constants 1 2 1 2 1, , , ,a a c c b
, and 2b

 

are to specified using the imposed boundary 

conditions at the surface of the object.  The 

radial distance in equations (4.13), (4.14) and in 

all subsequent relations in this article are 

normalized with respect to the radius a of the 

object and also the parameter, .  Inserting 

(4.10), (4.13) and (4.14) into (4.4) and (4.9) we 

obtain the components of velocity and 

microrotation as 

     2 2 1

1 2 1 2 1 1 2 1ln cos ,rq a r a c r c r r b K r b I r       

          (4.15) 

      2 2

1 2 1 2 1 1 2 13 1 ln sin ,q a r a c r c r b K r b I r


         

      (4.16) 

     2

1 1 1 2 14 sin ,a c r b K r b I r      

     (4.17) 

where dashes denote to differentiation.  At 

infinity the components of velocity and 

microrotation must be bounded that is  

0, 0, 0 as .rq q r   
 (4.18) 
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To satisfy condition (4.18), we must set 

2 1 2 2 0a c c b   
. 

5. Heat transfer through fluid and particle 

Under the assumptions stated above, the 

governed equation satisfied by temperature in 

the fluid medium is   

2 0, ,T a r      (5.1) 

and the temperature inside the object is 

given by  

2 0, 0pT r a   
       (5.2) 

Assume the heat vectors of the fluid medium 

and inside the object has the forms: 

,r rE E e E e  
   (5.3) 

,p pr r pE E e E e  
    (5.4) 

where the expression of E  is given by (2.8) 

and  

0 ,p p pE k T r a    
 (5.5) 

with pk
 represents the heat conductivity of 

the object. The heat flux at the surface of the 

object is continuous; while we assume a 

temperature jump at the interface between fluid 

and object proportional to the heat flux.  At 

large distances from the object the temperature 

of the fluid  remains constant 

Also, the temperature inside the object is 

finite everywhere therefore , the boundary 

conditions are 

, on 1r p rE e E e r   
  

(5.6) 

, on 1t
p r

C
T T E e r

k


    

  
(5.7) 

0 cos , asT T T aE r r     
 

(5.8) 

is finite, as 0pT r 
 (5.9) 

Here tC
 is the dimensionless jump factor. 

This factor is a semi-empirical and is of the 

order unity. The jump factor tC
can be 

calculated using the expression: 

 1.875 2 /t t tC f f
  [50, 51], where tf  refers 

to the heat accommodation coefficient at the the 

object-fluid interface. The solution of the 

differential equations (5.1) and (5.2), subject to 

the associated boundary conditions (5.6) -(5.2) 

are found to be 

 20 0
0 0 1 1 2

0

1 1
1 cos ,

T
T T aE k b K r

E r




   
            

            (5.10) 

 20
0 1 1

0

2 cos ,p

TaE
T T b K r

E





 
    

    
(5.11) 

where 0 01 , 1 ,t tkC k kC      

/t tC C a 
, 

/pk k k
 is the heat conductivity 

ratio and
  2

1 / a   
is the second heat 

conductivity parameter due the spin of 

microelement. Note that the constant 1b
  that 

appears in the above expressions of T and pT
, 

is not yet calculated; it will be specified from 

the imposed conditions at the surface of the 

object.   If we omit the terms involving the 

constant 1b
 from the above expressions of T

and pT
, we obtain the corresponding values 

reported by Chang and Keh [17]. 

6. Kinematic and dynamic conditions  

To find the remining constants 1 1,a b
of the 

flow and the unknown velocity U , the 

kinematic and dynamic (slippage) conditions at 

the surface of the object must be settled. The 

kinematic and the slippage conditions (see 

equations (3.1) - (3.4)) at the solid boundary of 

the are in the form 

cosθ,rq U
 (6.1) 

1

0

2
*

2

0

2 (2 ) 1
sin

2 2

(2 ) 1 1
,

2

m s
r

m h

C C T
q U

r T r

C C T

r T r r

 

      
       

      

         
    

     

 (6.2) 

.n
r z

C
m


 

  (6.3) 
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Here in this study, as we are concerned with 

slip flow of micropolar fluids, it is essential to 

consider the spin slip condition (6.3). Slippage 

conditions at the surface of an object for 

micropolar regions have been utilized for the 

velocity, but not for spin, by Sherief et al. [52] 

and Saad [53].  We anticipate that it is 

practically more really to employ the slippage 

conditions for velocity and spin since each of 

them is applied at the same boundary surface 

and the slip is basically depends on the nature 

of the solid boundary and the kind of fluid 

medium [13]. The following expressions are 

needed 

  1

1 1 1 sin ,a r b K r   
   (6.4) 

  2 1

1 1 1 cos ,rq a r b r K r   
  (6.5) 

     2 1

1 1 0 1 sin ,q a r b K r r K r 

    
 

(6.6) 

 2

1 1 sin ,a b K r   
    (6.7) 

    2 1

1 0 1 sin ,a b r rK r K r
r


   

  
(6.8) 

      
2

2 2 2 2

1 0 12
2 sin ,a b r rK r r K r

r

 
    

  
(6.9) 

       3 2

1 1 0 12 2 2 sin ,ra a r b r rK r K r 

       
 

(6.10) 

 
    2 1 2

1 0 1

0

sin ,rz

T
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T
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     
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(6.11) 
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0
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


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 (6.12) 
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0
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TaET
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



    
      

        
(6.13) 

Applying conditions (6.1) and (6.3), we 

obtain the values of the constants 1a
 and 1b

as 

  1 1

1 0 1 1 0 1 0 1 02 , 2 ,n na U C K U b C U        

 (6.14) 

where 
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,
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   

  

 (6.15) 

Inserting (6.6), (6.8)-(6.10), (6.12)-(6.14) 

into the slip condition (6.2), we obtain the 

normalized thermophoretic velocity, 

0/thU U U
of the cylindrical particle as: 

 
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
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  


      



    
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 (6.16) 

The last term in (6.16) represents the 

normalized thermophoretic velocity of a 

cylindrical object embedded in an unbounded 

classical viscous fluid; it recovers the 

conclusion given by Chang and Keh [21]. It is 

known that  the Stokes equation (4.8) with 

equation  (4.9) for the two-dimensional motion, 

in the absence of applied temperature gradient 

is not unique  for objects immersed  in  an 

infinite micropolar medium. The existence of 

solution of the present thermophoretic problem 

is due the effect of thermal slips terms of 

equation (6.2).   

7. Comments  

 We present here, the comments on the 

graphs which represent the thermophoretic 

velocity of the cylindrical object immersed in 

the considered fluid region under the action of 

temperature difference given by (6.16). In the 

process of graphing, we used the following 

jump and slip non-dimensional numbers: 

C =1.14,  C =2.18, C =1.17m t s and 
C =1.2n ; 

these values are recommended in the literature. 

We also consider the following values for the 

viscosity parameters representing spin of 

micro-elements inside the macroelements,  

2/ =0.2,a 
 

2/ =0.3a 
 respectively. Also, 

we consider 
2 ,t m n mC C C C 

. 
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The normalized thermophoretic velocity 

(mobility) of the cylindrical object is plotted in 

Figs. (2)-(7) against different values of the 

following physical parameters: 

i. The heat conductivity ratio
 /pk k k

  

ii. The Knudsen value 
 /Kn a 

, 

iii. The viscosity /  , 

iv. The jump factor 
 /t tC C a 

, frictional 

slip 
 /m mC C a 

, and frictional spin slip 

 /n nC C a 
 parameters, 

v. The heat stress slippage parameter hC
, 

vi. The spin heat conductivity factor

  2

1 / a     
. 

The plots in Fig. (2) show that non-

dimensional thermophoretic mobility, thU
 

decreases monotonically as k  increases for a 

fixed values of / a  in the slip regime. This 

clarifies the fact that a relatively large 

conductivity of the object diminish the local 

temperature difference and therefore, the effect 

of heat creep along the surface of the object. 

For a fixed value of the thermal conductivity k

, the non-dimensional thermophoretic mobility 

decrease with an increase of the heat 

conductivity   due to spin. The plots show 

also that when the thermal conductivity  is 

low in the slip flow region: thU
 increases with 

a decrease of / a in the range of values of k

less than 1and thU
increases with  an increase of 

/ a in the range of values of k larger than 1.  

Fig. (2): Plots of the normalized 

thermophoretic mobility thU   against the heat 

conductivity ratio k   for various  values of 

a   and with C 0, 4h     . 

However, for large values of  , the 

mobility thU
increase with the decrease of / a

for a given value of k in its entire range. 

The plots in Fig. (3) show the non- 

dimensional thermophoretic mobility thU

against the viscosity ratio   . It shows, the 

normalized thermophoretic velocity decreasing 

with the increase of the micropolarity 

parameter. This means maximum values of thU
 

reached for the Newtonian viscous media. The 

dashed plots (with 
C 0h  ) indicate the case 

no-heat stress slip. It can be noted that the 

implement of heat stress slippage can be 

powerful when the value of the Knudsen value 

is not very small or when the size of the object 

is not very large The effect of 
Ch is very weak 

for very small values of a . 

 

Fig. (3): Plots of the mobility thU
  against    

for various values of a   and 
Ch   with 

=0.2, 1k  . 

graphs of the non-dimensional 

thermophoretic mobility thU
  against the 

Knudsen number a   are exhibited in Fig. (4). 

It indicates that in the slippage range, the 

thermophoretic mobility thU
  decreases as a

increases for 1k   and thU
increases with the 

increase of a for 1k  . The effect of heat 
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conductivity  due spin is low when the value 

of a  approaches zero. Note that, in the plots 

including the heat conductivity ratio k , we  

considered values of k  less than one for 

comparison. 

 

Fig. (4): graphs of the mobility thU
  against the 

a   for various values of k    and    with 

C =0, 2h   
. 

Again, Fig. (5) show plots of the normalized 

thermophoretic mobility thU
  against a .  It 

indicates that for various values of the 

mechanical slippage mC
, the mobility thU

 

increases with the increase of Knudsen number 

in the slippage range. Again, the effect of heat 

slippage is low for very small values of 

Knudsen number. 

 

Fig. (5): graphs of the   mobility thU
  against  

a   for various values of mC
 and 

Ch  with 

=0.2, 2, 1k     . 

Fig. (6) show the plots of mobility thU
  against 

the ratio k . It indicates that, thU
has the largest 

values for the case of continuous temperature at 

the interface of solid/fluid. 

 

Fig. (6): graphs of the mobility thU
  against  

the ratio k   for various values tC
  and with

2 , ,C =0, 5t m n m hC C C C    
. 

Fig. (7) show the graphs of the mobility thU
  

against    . It indicates that the effect of 

micropolarity is weak for values of 1   . 

 

 

Fig. (7): graphs of the mobility thU
  against  

    for various values of the temperature 

jump parameter tC
  and with 

2 , ,C =0, k 1t m n m hC C C C  
. 

Figs. (8), (9) and Tables (1) and (2) show 

comparisons between thermophoretic velocities 

of cylindrical particles (present study) and 

spherical particles (Saad and Faltas [59]). The 

plots and the values of thU
 displayed in Tables 

illustrates that under the same set of thermal 

and micropolarity parameters, the 

thermophoretic velocity of spherical particles 

has larger values than that of the corresponding 
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thermochromic velocity for cylindrical 

particles. 

 

Fig. (8): Comparison of the mobility thU
 of 

cylindrical and spherical objects against the 

ratio k   with
0.04, =1.9, C =0,ha  

 

4   .  

Table (1): Comparison of thU
between 

cylindrical and spherical particles, 

0.04, =1.9,a   C =0, 4h   
 

 

k  thU
(spherical 

particle) 

thU
(cylindrical 

particle) 

1 0.4041 0.2533 

5 0.2064 0.1041 

10 0.1524 0.0730 

50 0.0976 0.0444 

100 0.0898 0.0406 

 

 

Fig. (9):  Comparison of the mobility thU
 of 

cylindrical and  spherical objects against the 

ratio a   with 
C =0.1, C =1,m h  =0.2,  

2, 1k    . 

Table (2): Comparison of thU
between 

cylindrical and spherical particles  
C =0.1,m  

 C =1, =0.2,h 
 2, 1k     

 

a  

thU

(spherical 

particle) 

thU
(cylindrical 

particle) 

0.02 0.6603 0.4986 

0.04 0.6703 0.5093 

0.06 0.6798 0.5197 

0.08 0.6890 0.5298 

0.1 0.6978 0.5395 

 

8. Conclusion 

In this article, an expression for the 

thermophoretic velocity of a cylindrical object 

immersed in an infinite micropolar fluid region 

is found. The Knudsen is assumed to be very 

small so that the flow is in the continuum flow 

regime. The term of heat stress slippage is 

considered in our investigation and it is found 

that in general has a significant effect on the 

thermophoretic mobility of the object.  A new 

thermal coefficient arises from the spin of the 

microelements characterizing the micropolar 

gaseous medium. Again, it found that this 

coefficient has an important significant effect 

on the mobility of the object. 
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