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A REVIEW OF CONVENTIONAL FRICTION FORMULAE
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ABSTRACT:

The purpose of the present research is to choose a suitable resistance formula
lor the local conditions of unlined open channels. This was achieved by using a mathematical
model for El-Mansoura canal, east of delta,Fig.{!). To construct the numerical model field
data were collected and analysed.

Manning's equation could be used for design purposes on the condition that Manning's
coefficient varies between 0.024 and 0.026. Cole-brook's formula for smooth turbulent flow
gave the best accurate simulated depth and discharge values by using a modified factor.

INTRODUCTION:

The continued efforts by engimnears and scientists have produced hundred of empirical
flow resistance formulae. The formula of Chezy with coefficient derived from kutter's
and Powell's formulae is currently in use in many countries,

Manning's formula is also equally widely used in other countries. Canal design
practices of proven success vary from country to country depending on the conditions particul-
arly soil formation, sediment transport characteristics, operational needs and desired standard
of maintenance. 1t would therefore, not to be advisable for any one to follow the design
practices of another country regardless the change required to meet the local conditions.

A mathematical model was costructed to choose the most convenient formuia
to be applled for lrrigation canals under new local conditons speclally after the erectlon of
Aswan High Dam.

Two reaches of EI Mansoura canat, each of 18.0 Kms in length, were selected
to collect the necessary data for the mathematical model. The first reach starts from Meit
Ghamr to Sanayt regulator and the second’reach from Sanayt regulator to Bahr Tanah canal,
Fig{2).

FRICTION FORMULAE:

Chezy’s formula {1768)

vV = c Rllz S(/Z
(1)
in whichs
V¥ = mean velocity;
R = hydraulic radius;
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C = Chezy's coeificient ; and
5 = slope of the channel.

Ganguillet and Kutter (1869} gave the following formula for Chazy's coefficient

(Ck
23 + 1 + 0.00155
C - (2}
0.00155 N
1+ 23 + —F ) —
¥ R
where, N = Kutter's coeffictent
Bazin {1897) proposed the following formula for (C)
C - 157.6 (3)
1.81 + =
R
where, m = Bazin's coelficient
Manning's equation {|889)
V - 3.‘ Rzza sl/z (4)

where, n = Manning's coefficient
The relationship between Chezy's coefficient {C) and Manning's coefficient (n) is

given by:
s (5)

The relationship between the average sediment diameter (d) in ft. and Manning's
coefficient (n) for sand streams is given by (11):

n = 0.034 4*° (6)
Cole-brook and White {I938) gave the familiar transition formula (17):
1 K 2.52
—2_ ~-2.01log (—— 4 ) A7)
i 14.82 R R
in whichz
f = Darcy-Weisbach friction factor;

Ko average height of roughness;

R, = Reynold's number; and

R = hydravlic radius.

Zegzhda (1989) made one of the first attempts to apply this concept to open channels,

since then extensive studies have been performed by many investigators.
The resistance to flow in open channel with fully developed roughness:

1 a R
~= = ¢ log ( ) a
s K 0
K, v,
for Ry = —5— > 70

where:
Ry = friction Reynolds number;

Vy = shear velgcity} and
WV = kinematic vis%osity
The resistance to smooth turbulent flow is given by:
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RY £
L - cleg ( §— (9 :
7E g v
. ¥ 1
for Ry, = —— <5
For transition turbulent flow {16):
_1_ =-c 1 a R Ro f ‘
S5 og ( TRy t—p— (10}

where ab and ¢ are constants.

In general {f) is afunction of relative roughness. Reynolds number. Shape of cross
section and the parameters a,b and c.

For sand bed channels, K =d,as suggested by Einstein {1950), K, =dp°as given
by Meyer peter (1948) and Kg= d gs suggested by Simon and Richardson {1966).

In 1950 Powell published his logarithmic formula to calculate Chezy's coefficient
for artificial channels in the form (12) :

C=-42 log (

c £
TR, t¢ ) (11)
in which C is a measure of the channel roughness.
Powell's formula for fully rough flow is given by:

C =42 log ¢ -5-) (12)
and for hydraulically smooth flow is:
4R
€ = 42 log { = ) (13)

The relationshilp between Darcy Weisbach coefficient (f) and Chezy's (C) is

C = g
/= (14)

where: g = acceleration due to gravity.

given by:

Composite Roughness:

In most natural channels the roughness changes along the channel perimeter
due to the difference of flow duration, therefore it is necessary to calculate an equivaient -
roughness coefficient (n_) for the entire wetted perimeter.

Dilferent methods for obtaining the equivalent roughness coefficient have been
proposed (8).

Lotter (1933) assumed that the total discharge of the section is equal to the
sum of subsection discharge, he derived the following formula:

/8
ne —— (15
N PR \
wn whichs 52 0,

o= quivalent Manning's coefficient;
P = wetted perimeter of the complete section;
R = hydraulic radius of the compiete section; .
Ry, P, = mean hydraulic radius and wetted perimeter of the ith subsection respec-
tively; and
N = number of subsections.
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Horton and Einstein assumed that each of the subdivision of the flow area has
the same average velocity of the total section:
" -3
272
n.

(167

Pavlovski, Einstein and Banks assumed that the total [orce resisting the flow
is equal to the forces developed in the subdivided area:
N 12
P nt
L

| (17)

For alluvial channeis the resistance due to bed forms must be added to the. resis-
tance due to grain roughness. The evaluation of the resistance due to bed forms is com-
plicated. Mostafa and McDermid expressed Manning's equation for alluvial channels, in
dimensionless [orm as follows (6) :

I 4
V- ¥ el = (18}
C ‘!./d
in whichs “
Cy= dimensionless Manning coefficient which is given as a function of I[roude
number and the ratio d5°f6 , where 5 is the thickness of sublayer (6}.

£ = d_as suggested by Einstein, or d_ by Meyer peter or d__as given by Simon
and Richardson. b

Based on the analysis of flume data Liu and Hwang introduced the foilowing
equation to calculate the mean velocity in straight alluvial channels:

- LI 4
V=C R s (19)

in which C, x and y are given by charts as a function of bed forms and sediment size (13).

MATHEMATICAL MODEL

Mathematical model for an open channel is the simulation of the flow conditions
depending on the formulation and solution of mathematical refationships expressing the
known principles of hydraulics. The implicit numerical scheme was chosen, among the other
numerical techniques, for solving the governing equations of motion. Several investigators
have devised logarithms for the solution of the partial differential equations of unsteady
flow (1,3,#,5,14) by using the implicit method. This method is found to be stable for large
time steps. Also it is foundto be fast and suitable for long duration and long reaches with
compiex geometry.

The most popular implicit schemes are Priessmann scheme Abbott-lonecue scheme
and Verwey's variant of the Preissmann scheme. In the Preissmann scheme the newton
iteration method is used for the solution of the system of the nonlinear equations by reducing
them to a system of linear equations. The convergence of this method depends mainly on
the choice of the intial values of the unknowns at the higher time level. The closer the
trial values to true values, the faster is the convergence between the measured and caiculated
values, but if the triai values are chosen in an arbitrary manner the system may fail to
converge.

In the Abbott-lonescue scheme, the discharge or velocity and the water depth
are computed at different grid points which causes practicat difficuities for applying the
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boundary conditions. Alse it is necessary to interpclate between different computational
peints, since the discharge and water depth are computed at different grid points which
causes practical difficulties for applying the boundary conditions. Also it is necessary to
interpolate between different computational points, since the discharge and water depth
are not known at the same points, which affect the accuracy of this scheme.

In the Verwey's variant of the Priessmann scheme, the discharge and water depth
are computed directly at the same grid points and for this reason there 15 no need to inter-
polate between points as in the above mentioned scheme. Also thére is no problem of conver-
gence as in the Priessmann scheme (9).

For the previous reasons, the Verwey's variant of the Priessmann implicit scheme
was chosen for the simulation of unsteady flow in the present research.

Preissmann Scheme:

Consider the governing equations:

2y 1 &qQ
_— = { 20 )
&k h &x
aqQ a a* ay Q |a}

+ — (—) + g A + g A -gAS5=0 t 21 )
2t - 4 A a X

The application of the Preissmann scheme to the derivatives in equation (20} and equatidn
(21) yieids,

et Yn rnfi Yl'|
Yo - Y. -
2 - : - * (z22)
gt 2 At 2 At
el el n _ A"
aq qu - Q] qu Qj
-8 + {1 - 8) ( 23)
a X AX ax
el 2 il n z n,2
2 @ @Y (e [ @D
J(Q/A}__s_ j=t i i +( ) i _ ( 23 )
rere el n al
e x  ax | AT} A ax | A7, A
Yru-i - Ynoi L] -
] -1 N T in J
Y - a : + (1-9) —e— { 25
& X ax ax

where:; AX = Xjﬂ- Xj

The coefficients of eqn.(20} and eqn{2l)are represented according to Priessman
as:

9 ne 4 LN (1 )
E(X, £} = — ¢ F + 7 . (7 + 7 )
2 et i 2 j*1 ]
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In the above expression, all the variable with superscripts (j) are known and all the variables
with superscripts {j+1) are the unknowns. Equations (3.7} constitute a system of two nonlinear
algebric equations in four unknowns. As there are (N} points on the row (j+1), there are(N-1)
rectangular grids and (N-1) ceils in the channel. Thus there are 2(N-1) equations lor the
evaluation of (2N} unknowns. Two boundary conditions provide the necessary-two additionai
equations to close the system. Different approaches are used to obtain the sotution of 2(N -1)
nonlinear equations. To find the value of unknowns at the time level (n+i}, Newton Raphson
iteration method may be used to provide a set of linear equations to be solved simuli-
aneously. .

Yerwwoy's Yariant of the Preissmann scheme:

A scheme of the Preissmann type was derived by Verwey {13}, who used a different
approximation for some terms, as follows:

rn ney ry et
2 z 1 Q.. 9, a; q
. jed Tie i ( 26 )
2 X A ax aAn? F Yakide
i i
(4] ne+d r (LLE
Qg 1 1251 Q; 19,1 9;.,
pe X - - ( 27 )
2 (Kr_nuxz,z (Kr.\ollt)z
b IR
- 2] ¥ n+i/2 nes 1.2 ne+is2
bt"! * b: et A:‘
b= i A - ( 28 )



C. 14 Zidan, A.R., Sakla, S. and Shammaa, M

The superscripts {n+l/2)means that the function is computed between two time

:evels (M) &t and (n+l} At. Substituting these approximations into equations (20) and (21)
eads to: :

LI E V] bn+1/2 LR _ " th_ L)
jea j v T Yiea Yy T
+ +
2 2 At 2 At
n+t 4 N+l n L]
v | 95as - 9] al,,-
— + -0 (29 )
2 AX AX
LY n e i Ll ™ e Ll n+i
jst T Miea Q; - q; 1 Q.. 9., 919
+ + LEE P - LLE Vs ]
2 At 2 At AX Aj:. A]
LLE Y] n+Ls2 ne i LA} n
pes T jer Y Yiedw ¥
g + +
i 2 ax AX
i n+1/2 n+1s2 ) n LAY ™ ne i
Aj.- + A;‘ 1 Ioj‘ Qj IQ,'u] jee
d El - -
2 neds2 2 ne 172 2
: . (K] ) ]
r."l/z"‘ Ar:ol/! W
1+1 ] )
| S, = 0 { 30

If the coefficients of egn. {29) and egn. (30) with superscript (n+l) are considered
as known functions of flow variables computed at time levei (n) At, these equations may
be rewritten under the following form:

n+d n+t ned

Ay, +BA +CyT +DQ" +G6 =0 51 )
AV e B O e D' s o (32 )
~ g Ve a
etz Theﬂcomputation begings by setting b:_""" = b'; 3 Aj » A,:
K, - Kj .The resulting system of linear equations in Y?”. ", =12, ...4,N

’
is solved to give a first approximation to these values 7** ‘o™ ! and a second
]
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approximation to the coefficients,

1 ned n
P~ - [ hj Y] ) + b, ( Yj)
! 2

1 n
AT [Aj { y';") + Aj ( ‘!j) ]
2

1 el n
Krjnl/l - - [KJ { y} Y o+ K’ { Yj) ]

The second resolution of the linear system leads to the approximation of the unknowns
and so on.

Flow chart of the main computer program is given in Appendix (1),

Subroutines Asoclv, Psolv and Tsolv were prepared to calculate the area, the wetted
perimeter and top width of every channel cross section, at different water levels, respec-
tively. Also subroutine NSOLV was prepared to compute the eqivalent Manning coeflicient
(15.

FIELD AND EXPERIMENTAL WORK:

Sectional profiles across the channels were made from Meit Ghamr to El Mansoura
city {(Bahr Tanah Canal)l at equal distances of 2.0 Km. For each cross.section, the level
of the channei bed and its sides were measured every 2.0 ms along the channel section.

To measure the levels of each channel section, the nearest datum point made
by the ministry of Irrigation was used. Section levels include backsights, intermediate
sights and foresights.

The levels of the channel bed and its sides for the first reach were measured
within the winter closure. For the second reach, the channel bed and its sides were measured
after the end of winter closure. Figs.{#) through {6) show surveyed cross sections at the
indicated locations.

Least square method was used to get the longitudinal bed slopes of the first and
second reaches which are 5.3 cmfkrr} and 4.5 cm/km respectivety.

The discharge and water depths for each reach were measured daily for a period
of 25 days at fixed stations shown in Fig-(2).

The cross section of flow was divided into a number of subareas using a marked
wire, width of each subarea was taken equal to 5.0 ms, then the mean velocity of each
subarea was measured by using the currentmeter. For shallow depths, the mean velocity
was considered equal to the velocity at 0.6 of the depth below the water surface. For
other depths the mean velocity was obtained as the average of the two velocities at 0.2
and 0.8 of depth below the water surface. The total discharge was obtained by summing
the products of each subsection area and its mean velocity (10},
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Samples of soil for every surveyed cross section of the channel were taken from
the surface of the channel bed and sides. Every sample was sieved by using a set of sieves
started from 2.5 mm to 0.6 mm. The soil particles passing sieve No. 63 were analysed
using the fixed position pipette method according to the British Standard No. 3%06 {2).

Fig. (7} thraugh (9) give the particle size distribution at some locations.

MODEL CALIBRATION:

The main objective of model calibration process is to get simulated resuits very
close to the corresponding measured values. The necessary data required for calibration
are hydrographs and depth time relationships. When a high level of calibration can be
achieved and verified, then it may be possible to extend the application of the model
beyond the limits of the data used in the calibration process.

Values of time increment (At) of 1! hours, 22 hours and %% hours were examined.
The space increment (4 X) was kept constant at 2.0 kms. Cole-brook's equation was used
to represent the friction term in the mathematical model. The least square method was
used to measure the degree of accuracy between the measured and simulated values. It
was found thatAt = 22 hours is more suitable for the model.

Values of space increment (AX) of | Km. 2 Kms and 6 Kms were tested. The
time increment used was 22 hours. Alss Cole-brook formula was used to represent the
boundary resistance. It was concluded that the space increment of 2 Kms is more convenient.

The effect of applying lotter formula, Horton and Einstein formula, and Pavlovski,
Einstein and Banks formula to the model, for the calculation of equivalent roughness coeffi-
cient for every watted perimeter was examined. The time increment and space increment
were kept constant at 22 hours and 2 Kms respectively. Strickler's formula was used to
represent Manning's coefficient as a function of the median particle size. The results
obtained by Horten Einstein formula were found more accurate than those obtained by
the other two formula.

Statistical analyses for model calibration are given in Appendix (2)

ANALYSES OF RESULTS:

Manning's Equation:

The frication term required for the mathemtical model using "Manning's equation
was represented by:

3 n: Ff/u Q a
f Axo/!

Using Strickler's formula and then Horton-Einstein equation, eqn (16), was applied
to get an equivalent roughness of each channel section.

The computed restults using Manning's formula are illustrated in figures(10} through
(13). It is clear from the figures that the values of simulated water depths are less than
the corresponding measured depths. To improve the simulated values of water depths,
Manning's coefficient was investigated using the following two hypotheses:

a) Constant Manning's coefficient along the channel reach, for the first reach three trail
values were examined, n=0.024, n=0.025 and n=0.026, and for the second reach, n=0.0245,
n=0.025 and n=0.0235. Using the least squares method, the value of Manning's coeificient
which gave accurate results was found to be 0.025 for both the first and second reaches.
However the computed resuits by using the above mentioned values of Manning's coeffi-
cient are accepted at 5% level of signi?icance using the F test.



C. 18

Percent finer (by wt)

Percent finer (by wt)

Zidan, A.R.,

Sakla, S. and Shammaa, M

o Flest cesch o
20| Right mide —e—m-— |+
W Lart side  —-——m- /]
0l ped f,{

i

]

Particle diameter (microns)

100

Fig.( 7 ) The particle size diatribution at X.M.(0.2,4)

Jf
%0 Fizat reach f‘
T Right side ————— /
O | art alde ————memoe
or Bad 15
0 180 1000 1000-0

Particle diametsr (microns)

"Flg.( § ) Tha earticla siza diatribution at K.H.{16,18)

Percent finer (by wt)

10+] gecont reach ';,»ﬁ" /
®| Right side —-—.—  ET
0T Left mide mmmemaen :}'
0 Bea N
%0
0
40
Y
0
0
12 100 1000 0000

Particls djameter (microns)

Flg.{ § ) Tha particle size distribution at K.M.(32.5,34.5)




C. 19
3
8

]
8

Diacharge (P /3ec)

. 15, No. 2, Dec. 1990
2
3

Mansoura Engineering Journal (MEJ) Vol

Flrnt reach
Ax=2000 »

. At=73200 mec

» n=0.,024

+ n=0,02%
A n=0,026
meanured

AX=2000

g

At=75200
o n=0,024%
+ n=0.025
4 n=0,0265

—

mapaured

Becond reach

[
sec

Nt

Discharge (m3 /sec)

3

¢
r-]
g

Fig.{10) Comparison between simulated and maeasurad hydrogrophs

t
130.00 16400

i i

N

AR

Time (hours)

1 L
398.00 462.00

- . ‘,. »
.
\\Jr —
) J - |\\I|\4
7| Lo L i b v _d
764.00 33000 398.00 48200 328,00

Flrst reach
AX=2000 m

Ata75200 smec

ve n=0,024
+ n=0.025
A n=0.0268
—— measuted

Tirne (hours)

Fig.( 12} Comparizon between simulated ond measured hydrographs

AX=2000
At=79280
o n=0.0245

+ n=D.02%
s p=0.0265
meapured

facond reach |

[

-
aec

e

Depth (m)

s

Fig.{ 11 ) Comparison between simuloted and meosured water depths

-

| Pt

i S r 1 _

*1

{/f

SN

d

108.00 28400

Time (sac)

awn.oe 452,00

TS T P S N Y R 1

1t
28400 *339.00 390.00 162,00 474.00

Time (aac)

Fig.{ 13 ) Comparison belween simuloted ond measured water depths



C. 20 Zidan, A.R., Sakla, S. and Shammaa, M.

b} Varying Manning's coefficient along the channel reach, Strickler formula has to be modified

to n=0.095d”6 for the first reach and n=l).096d”6 for the second reach to get the
best between the simulated hydrographs and water depths and the corresponding measured
values, Figures (14) through (17) values of Manning's coefficient are given in Appendix
(3) however there is no significant difference between the two modified factors at 5%
levei. .

Chezy’s Equation:

The friction term required for the mathematical model by using Chezy's eguation
is given by:

Pag|al
g
t ool )

Many attempts were made to get Chezy's coetficient (C)

1) Ganguiliet and Kutter formula:

The simulated results are given in Figures (L8} through (21)

2) Powell formula:

The flow in El Mansoura canal was found to be smooth turbulent flow as Rg=Vy«
K./» € 5. The application of Powell formula showed less accuracy in the simulated water
dépths and hydrographs, Figures {18) through (21)

Appendix (4) givesthe values of Ryalong the channel.

3) Cole-brook Formula:

The friction term (f}was obtained for smooth turbulent flow ffom the equation:

R, /T

2.5

= C log ¢( ]

£

The factor (C) was taken equal to 2.0 and it was changed to other values for
the first and second reaches.

The least squares method showed that the value of factor
accurate simulated values was found to be [.2 for the first reach and egual to i.l for
the second reach. There is any significant difference between the wo values at 5% level.

(c) Which gave more

4) Channel with movable boundaries:

Two equations were sefected for this study. The first equation by Mostafa and
McDermid. Bqn. {18}, and the second equation by Liu and Hwang, eqn. (19). The two equations
showed less accuracy in the simulated hydrographs and depths than the corresponding vaiues
by using either Manning's equation or Chezy's formula. Simulated hydrographs and depths
are shown in Figures (26} through (33),

In Figures 14, 21,23,27,29,31 and 33 water depths exhibited lower values than
the corresponding measured ones, this is due to small values of friction coefficient which
give bigger valuves of velocities. It is noticed that the calculated depths versus time are
similar in shapes to the corresponding measured depths, this is mainly due to regular shapes
of cross sections of the channel under study.
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CONCLUSIONS :

At the outset of this investigation to choose the most convenient friction formula
to be applied for Egyptian irrigation canals, a decision was made in favour of mathematical
model. The numerical model was constructed on Verwey's variant of the Priessmann scheme.

The time increment of 22 hours and space increment of 2.0 kms are suitable
Ier the model calibration regarding the computer time and the high degree of accuracy.

The simulated reults by using Horton-Einstein equation for the computation of
the equivatent Manning's coefficient are more accurate than the corresponding results
by using either Pavlovski-Einstein {ormula or lotter formula.

Manning's equation could be used for design purposes with values of Manning's
coefficient varies between 0.024 and 0.026.

Ganguillet and Kutter formula gave good accuracy éor depth vajues but less than
that obtained by using either Manning's n=0.025 or n=0.095d1/6, On the other hand, optimum
accuracy for discharge values were given by Ganguillet and Kutter formula than those
obtained by using constant or varying Manning's coefficient.

Powel! formula showed big differences between measured and simulated water
depths and discharges.

The flow in E]1 mansouria canal is smooth turbulent, Cofe-brook's formuia with modified

coefficient gave more accurate simulated hydrographs and depths. é‘\lso, the simulated
results by varying Manning coefficient along the reach as n=0. 9541/ gave the optimurmn

accuracy for depth values.
Further investigations are recommended in this respect, to get an adjustable
relationship between Manning's coefficient {n) and the median particle size (d) and medified

coefficients for cole-brook white formula and the eifect of movable boundaries on friction
formulae. This could be achieved by using more extensive data of field measurements.
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NOTATION

cross sectional areas

width of cross section;

Chezy coefficient;

factor;

coefficient for Liv and Hwang equation;
dimensionless Manning coefiicient;
diameter of pipe;

median grain size

friction factor;

acceleration due to gravity;
computational point index;

channe! conveyance factor;

average height of roughness;

Bazin coefficient;

Manning coefficient;

equivalent Manning coefficient;

wetted perimeter;

volumetric water discharge;

hydraulic radius;

Reynolds number;

Reynolds number of friction;

bed slope in the X-directions

friction slope in the X-direction;
=-top-width-of-channel;

time;

time intervat;

steady flow velocity; .
shear velocitys

longitudinal space co-ordinate in horizontal plane;
coefficient for Liu and Hwang formula

(LI T | I ¥ T O [ T TN ¥ T T S 1 T O (Y | T Y O { O T

ganan o>

233 ARR—®E~G
@ =3

.75230'0'

Fa
wouomnonu



C.23

ﬁbbhﬁ:“('ﬁ
> '

[ LI L | N | T T T I [}

Zidan, A.R,, Sakla, S. and Shammaa, M.

v

depth of water;

coefficient for Liu and Hwang formula;
thickness of the viscous sublayer;

dlﬂﬂ’ CL °rdm‘ . .
time between two computational intervals;
distance between two computational points; and
Kinematic viscosity.
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Appendix ( 1 )
Flow Chart for Main Program :
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Appendix ( 2 )

Statistical Analysis of Model Calibration

324’1-1 7.82 First Reach

Time Increment

Statintical rasults for hyvdrographs

At=2Zhours | Atellhours | Stmadhours
Leaat square
method 0.6199306 | 0.53196 0 662277
F-Tant 1.001042812 |1, 047541377 1.2722467

Statintical results for water dapths

At=22houre At=llhours | At=44houre
Least aquare
‘ mat hod 4.854543 4.1438% 10.03246
F~Tast 1.940131966 | 1 .031795%9) 2.019601%

Space Increment

Statisticei results for hvdrographs
AX=2 Kms AX=1 Km AX=6 Kma
- Least square 29.177 0.7400827
method 0.6199308 9 3 0082
F-Temt 1.001042812 1.04927474 1.001511328
Statisticel rasults for wvater depths
AX=2 Huns AX=1 Hm AX=6 Kmg
Least gquare
nethod 4.8545430 5.2425990 | 4.7311680
F~Tost 1.015577 1.0157308 1,0%62763
Friction Formulae
Statintical reoults for hydragrapha —}
Einstein Pavigqvski Lottar
“Leagst
mothod 562763 | 24.06314- | 26,277761
F-Teat 1.0299 1.0303232 1.0315987
Statistical resuits for water depths
Einstsin Pavioveki Lotter
Loast square
methoed 14.089001 46.5961 41.9112
F-Test 1.250916 1.113315842 1,11331%8




Mansoura Engineering Journal (MEJ) Vol. 15, No. 2, Dec. 1990

Statistical Analysis of Model Calibration
F2ll-,l= 7.82 Second Reach
Time Increment

Statistical results for hydrographs

At=23hours | At=llhours | At=ddhours
Leant aauars 0.1161864 |0.114200 0.11948
F-Tast 1.00288196 | 1.008887494( 1.05441497

Statiatical results for water depths

at=22hours at=l1lhours At=d44hours
Leaat square 1164167
method 6.010584 5.991889 6
F-Test 1.39632001 1.36704958 1.9151522

space Increment

Statistical results for hydrographe

AX=3 Kmg AX=1 Km AX=6 Kma
Leamt 8qusre | o.1161064 23.78912 0.1159129
- FTamr 1.a0Z2AR1964 | 1.01343231 1.00280196

Statiatical resulte for water depths

A4X=2 Kme AX=i Km AX=6 Kma
L aauare | 5. 010584 6.5572% 5.79392
F-Tesat 1.39632001 | y 39671978 1.39632

Friction Formulae

Statislical results for hydrographsa
Einstein Pavlioveki Lotter
Least square
method 19.92823 71, 407643 | 2% 99378
F-Test 1.019394° 1.002868107 | 1.0325824
Statistical results for water depths
Einatain Pavioveka Lotter
o hoa " | 42.6222 4440984 | 46.4277%
F-Test 2.2799068 2.21722 2,21232
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Appendix ( 3

)

Valuee of Manning's coefficient
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(N}

Second Reach
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»  pppendix ( & )

Va Ka .
Values of R, = along El Mansocuria Canal
»w
L 4 - 3
ymwater depth K=agection No,
.
L= Time level
First Reach Second Reach
-

Y- 3.3836630 RA+-2.72837000 L= 3J K- 1 Y= 2.8191%00 R*=3.89293000 L= 3
Y= 2.3949990 R+-2.00743800 L= 3 K- 2 Y= 3,0302R60 K*~3,8l017000 [- 3
Y- 3.6244630 R*-3.43914100 L= 3 K= 3 Yo 3.8424000 R#=3,34453800 L= §
Y- 3.6442060 R+-2.90372300 L= 3 K= 4 Y- 3.8633370 R*=3.13823300 L- 3
¥= 3.6747190 R*=2.31473200 L- 3 K= 5§ Y= 3.87357630 M+*=3,7296%800 L~- 9
Y= 3.7104970 R*=2,88399500 L~ 3 K- 6 Y= 3,8633730 R'~d,24446800 L- S
Y- 3.7936140 R*~3.11072000 L- 3 K= 7 Y- 3.8600440 R*~3.50012200 L- 3§
Y= 3:7703930 K*~3.34509100 L= 5 K= B Y= 3.074B430 H*»3,91043300 1= 3
¥~ 3,0018920 R*=3,29030500 L+ 3 K~ § Y- 3.8693630 [*ed.072104t00 1~ 4
Ye 3,8423100 R*-3.2205%008 L= 3 x- 10 Y= 3.003G12¢ R*~3.44719700 L= 3
¥- 3,4632380 R*~2,66056400 L= 10 K- 1 Y= 3.3330070 M9=3.49407800 L= 10
Y= 3.4738500 R*-2.72937300 L- 1o K- 2 Y= 3.5869180 R*=3.63U45800 L~ 10
Y~ 3.5031370 R*=2.33397600 L- 10 K- 3 Y= 3.3811420 R*-).18280100 L= 10
Y~ 3.3275570 R*=3.77399800 L= 10 Kk~ 4 Y= 3.6041360 R*=7,99983800 L~ 10
¥- 3.3603420 R*-~3.19029300 L- 10 K= 5 Y~ 3.6182840 R*=3.38021600 L~ 10
¥- 3.6068920 R*-2.76681000 1~ (0 K- & Y- 3.6076320 Rv=4.07463200 L- 10
Y= 3.6458410 R*-2.98931200 L= L0 K- 7 Y= 3.6037070 H+~3.63114500 L= 10
¥+ 3.6742320 R*=3.20620000 L= 10 K- | ¥- 1.6224420 R*=3.34201700 1~ 10
Y= 3,7004030 R*=3.12017600 L= 10 K- g Y= 3.6171220 R*=3.94761900 L- 10
Y= 3.7437200 R*-1.08393500 L~ 10 K- 1y Y= 2,6303130 R*-3,29309900 L~ 10
Y= 3.3798420 R*-2.56073700 L- 15 Ke | Y= 3.3427450 R:-3.39287BUD L= 13
Y= 3.3980820 R*-2.863518000 L- 15 K 3 ¥- 3.2562600 R+-3.53650300 L- 15
¥~ 3.4316740 H*-2.27443100 L- 15 ke - Y- 3.369A800 R*-1.09810900 L~ 15,
I~ 3,4504360 R*-3.63863400 L~ 15 K- 4 1= 2.3927310  Re-2.91180600 L= 15
¥+ 3.4949640 R*-3.08604200 L- 15 K- & o 3-4us3dze R.-3.50023200 L- 15
Y= 3.3430170 H*-2.67234000 L- 15 K- 3 Y7 3.3248620 R:-3.99390600 L- 13
Y- 313891370 R*-3.68305000 Lo 13 ko o Y- 3.39163%0 R*-3.33151400 L= 1%
¥= 3.6220330 R*-3.09331800 L- 13 k- @ yo 3-1081440  R+-3.23614600 L- 13
Y= 3.6347110 R<=2.983B0500 L- 33 K~ o V2 3:3991270 Re-3.89137800 L- 13
Y= 3.7044340 R*-2.92832300 L- 15 K= 10 Y= 3.4085760 R*=3.19630200 L~ 1%
Y= 3.307864U R*-2.63734300 L- 20 K~ | ¥~ 3.1072210 R*=3.22625000 L~ 20
Y= 2.4000770 R*-2.70906B0 L- 20 X- 2 Y- 3.2043970 R-+3.36838100 L= 20
Y= 3.4290360 R*-J.33338100 L- 20 K- 1 Y+ 3.2217330 R%=2,94209000 L- 20
Y- 3.4308810 R*=3.75633700 L- 20 k- 4 Y= 3.2481700 R*-2,73036200 L- 20
Y= 3.4831310 H*-3.16799200 |- 20 K- 5 ¥= 3.2662970 R*=3.3300600 L~ 20
Y- 2.3296710 R*~2,74266300 L= 20 K- & ¥= 3,2003170 R*~3.790142100 L- 30
T- 2.3695940 R*~2.96281400 L= 20 K~ 7 Y= 1.2624000 R*-3,34097300 L- 20
¥- 3.5969260 R*~3.17743500 |~ 20 K- ¢ Y- 3 1935960 11'-3, 0616500 [- 20
TY= 3.6229%40  [1°3.09139200 |- 20 K- Y= 1,4704920  [4~3.73453200 L- 20
Y= 3.6663160 R*=-3.04177900 L= 20 K= 1y Y= 3.2924290 R*=3.04746800 L~ 20

- LY -
. Y= 3.4137840 R*~2.61213000 L= 23 K~ Yo 2.3693490 R--3.37943400 L~ 23

Y= 3.4292030 R*-2.68192800 L~ 25 K-
¥= 3.4509330 R*-2.21081600 L- 2% K-
- Y= 3.48681930 R*=1,70373800 L=~ 25 K~
Y= 3.3216390 R*~3.11859300 L= 25 K«
Y= 3.57094i0 R*~2.69509300 L= 729 K=
Y= 3.6143930 R+*=2.89961000 L= 25 K-
Y= 3.6471880- R*=3.09782800 L~ 29 K=
Y= 3.6797820 R*~32,99476600 L~ 23 K=
- Y= 3.72935890 A*-2.93133800 L= 35 K=

Y= 3.3842170 R*=1.32202000 L~ 29
Y= 3.3991130 R*~3 06830400 L= 23
¥= 3.42294A0 HR*=32.90281900 L= 329
Y= 3.4378340 N*<3.40674900 L~ 29
Y= 3.4377130 R*~2.96817700 L= 2%
Yo 3.4260070 R*~).32092100 L~ 29
Y- 3.4436020 R*=3.22963900 L~ 23
¥- 3.4368780 R*-3.U7t51900 L~ 29
¥= 3.4483%70 R*=2.19107800 L~ 2%
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