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Abstract 
Multi-area economic dispatch (MAED) deals with the optimal dispatch of multiple areas. MAED with tie 

line constraints, transmission losses, multiple fuel option and valve point effects is considered as a large scale 
non-linear optimization problem. An accurate optimization method to solve this problem is of great interest. 
However the conventional particle swarm optimization (PSO) has been applied to solve many optimization 
problems with success, it suffers from some drawbacks. Therefore, chaotic PSO (CPSO) has been used to treat 
these drawbacks. Choosing the parameters of CPSO has a great effect on its performance. So, a hybrid CPSO 
and genetic algorithm (HCPSOGA) method is employed in this paper to solve this problem. The hybrid method 
is derived by combining CPSO and GA where GA is used to optimize the parameters of CPSO. To show the 
effectiveness of the hybrid method, two test systems are used. The results show the superiority of the hybrid 
method over some published methods based on same test systems. 
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1. Introduction 
Economic dispatch (ED) is one of the 

vital optimization problems in power system 
operation which aims to allocate the total 
load demand among the generation units 
while satisfying all constraints. ED problem 
is a complicated nonlinear optimization 
problem with several equality and inequality 
constraints. Many optimization methods 
were addressed in last few decades to solve 
single area ED problem [1-3]. 

In general, the generation units are 
divided into several generation areas which 
are interconnected by tie-lines. The main 
aim of multi-area economic dispatch 
(MAED) which is an extension of ED is 
determining the generation level and power 
transferred between areas in order to 
minimize the total fuel cost in all areas 
without violating any constraint. MAED is 
considered as a large scale non-linear 
optimization problem with several system 
and generators constraints [4]. 
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In literature, various methods are used 
to solve MAED problem. In [ 4), Basu 
presented teaching-learning-based 
optimization algorithm for solving MAED 
problem. The MAED problem is solved 
with tie line constraints considering 
transmission losses, multiple fuels, and 
valve point effect and prohibited operating 
zones. Sudhaker et al. in [5] presented the 
differential evolution (DE) to solve MAED 
problem with tie line constraints. For small 
and medium sized MAED problems, the 
evolutionary programming (EP) method is 
presented in [6] to solve this problem. In [7] 
the MAED problem with multiple fuel 
option 1s solved usmg evolutionary 
programming Levenberg marquartdt 
method. Sharma et al. [8] have presented a 
classic PSO and DE methods to solve the 
reserve constrained multi-area economic 
dispatch problem with many constraints. 

In modern power system operation, 
the total fuel cost function of generating 
units which supplied with multiple fuel 
sources may be segmented as piecewise 
quadratic cost functions for representing 
different fuel types [9]. The main aim of ED 
problem with multiple fuel options is to 
minimize total fuel cost among the available 
fuels (coal, oil or natural gas) for each unit 
satisfying all equality and inequality 
constraints. The ED problem with multiple 
fuel options is non-linear and non-convex 
problem. It contains the discontinuous 
values at each boundary forming multiple 
local optima. This makes the classical 
optimization methods are not suitable to 
solve this problem [9]. 

To solve ED problem with multiple 
fuel options, hierarchical techniques such as 
Hopfield neural network [9] and enhanced 
Lagrangian neural network [ 1 0) are used. 
These methods have some drawbacks where 
a large number of iterations are required to 
get the optimal solution and there is an 
oscillation during the transient process. 
Recently, the heuristic optimization methods 
such as genetic algorithm (GA) [ 11 ], 
particle swarm optimization (PSO) [ 12] and 
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Evolutionary programming method (EP) 
[ 13] have been applied with success. 

However, the conventional PSO has 
been found to be robust in solving the ED 
problem, it suffers from some drawbacks. 
The performance of conventional PSO 
greatly depends on its parameters and it may 
be trapped in local optima so as to 
prematurely converge [14) . To overcome the 
drawbacks of the conventional PSO, chaotic 
PSO (CPSO) method is proposed by 
combining PSO with chaotic equation such 
as logistic equation ( 14-16). In addition, 
some researchers combined it with GA and 
apply this hybrid method in many fields [ 17-
18). 

In this paper, a hybrid chaotic particle 
swarm optimization and genetic algorithm 
(HCPSOGA) is employed to solve the multi 
area economic dispatch with multiple fuels. 
The hybrid method can be derived by 
combining CPSO and GA where the GA is 
used to optimize the parameters of CPSO 
which affects its performance. The 
employed method is evaluated usmg 
different test systems and compared with 
some published methods employing the 
same data. 

The paper is organized as follows: 
Section 2 reviews the mathematical 
formulation of multi area economic dispatch 
with multiple fuels problem. Section 3 
describes the HCPSOGA method. 
Experimental results and comparisons with 
other methods are presented in Section 4. 
Finally, Section 5 concludes the work. 

2. Problem Formulation 
The objective of MAED is to 

minimize the total generation cost of all 
areas with satisfying different constraints 
including tie-line capacity constraints [ 4, 
11). This work considers the MAED 
problem with valve point effect, multiple 
fuel options and transmission losses. 

2.1 Objective function 
The objective function F is the total 

fuel cost of generating units of all areas and 
it can be defmed as: 
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where F.. (P .. , is the fuel cost of generator j 
IJ IJ 

in area i, Pij is the power generated by 
generator j in area i, aij, bij and Cij are the 
cost coefficients of generator j in area i, N is 
the number of areas and ~ is the number of 
the generators of area i. 

By considering valve-point effects, the 
fuel cost of the generation unit can be 
defined by adding sinusoidal term as in (2): 

N Mi 
F = I I F .. (P .. ) = 

. 1 . I IJ IJ 
I= J = 

f ~[a .. +b .. P .. tc .. P.~+~e .. xsm(h .. (P-~ -P .. ))I] ~- I'J IJIJ IJIJ IJ IJ 1J IJ 
1-1 J = 

(2) 

Where, ~j. hij are the valve-point 
coefficients of generator j in area i and Pij= 
is the minimum capacity limit of generator j . . 
m area 1. 

By considering multiple fuel options, 
the fuel cost of the generation unit can be 
defined as follows: 

N Mi 
F = I I: F .. (P .. ) (3) 

. 1" 1 1J lJ 
1 = J = 

Where F .. (P .. , can be defmed using (4), in 
IJ IJ 

which aijk, bijk and Cijk are the cost 
coefficients of generator j in area i using the 
fuel type k 

2.2 Constraints 
The MAED problem with multiple 

fuel options, valve point effects and 
transmission losses is subjected to the 
following constraints. 

2.2.1 Power balance constraint 
:Mi 
I P .. =PD.+ PL.+ I T. ,i = 1,2, ... ,N 

. 1 1J 1 1 . lZ 
J= ~Z*1 

(5) 
Where, Poi is the total load demand in area 
i, Pu is the transmission losses in area i and 
Tiz is the tie line power transfer from area i 
to area z When power flows from area i to 
area ~ T iz will be positive while Tiz is 
negative when power flows from area z to 
area i. In this paper, system loss is 
calculated as a function of units' power 
production using Kron' s loss fonnula 
known as B-matrix coefficients (19] as 
follows. 

Mi Mi Mi 

Pl.i = LLpijB.ljPil + LB.ioP;j + BoOi (6) 
1=1 j=l j=l 

Where ~lj is the ljth element of the loss 
coefficient square matrix in area i, ~jo is the 
jth element of the loss coefficient vector in 
area i and Booi is the loss coefficient constant 
in area i. 

a iii +biil P;i + ciil pii2 + ieiil x sin(~il (P;i';"n - pii )) for fuel 1, pii min ~ P;i ~ pijl 

aii2 +bii2pii +cii2P;/ +ieii2 xsin(~i2(P;i~ -P;J) for fuel 2, piil:::; P;i ~ pii2 

F .. (P.) = IJ IJ 

2.2.2 Maximum and minimum limits of 
power generation: 

(7) 

Where i = 1,2, ... , N and j = 1,2, ... , Mi 

_-

(4) 

2.2.3 Tie line capacity constraints 
The tie line power transfer T iz from 

area i to area z should not exceed the tie line 
transfer capacity for security consideration. 

- T;"' ~ Tiz :::; Tizam (8) 
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Where TizmiX is the power flow limit from 

area i to area z and - TizmiX is the power flow 

limit from area z to area i. 

3. Hybrid Chaotic Particle 
Swarm Optimization and 
Genetic Algorithm 

3.1 Particle Swarm Optimization 
(PSO) 
Particle swarm optimization (PSO) is 

a population based optimization technique 
developed by Kennedy and Eberhart in 1995 
[20]. PSO begins with initial population of 
random solution. Each solution called 
particle which flies around in the search 
space to fmd the best solution. However 
PSO shares some features with GA, it has 
no crossover or mutation operators as m 
GA. 

In PSO, every particle modifies its 
position according to its own experience and 
the experience of neighboring particles. The 
swann direction of each particle is 
determined by the history of this particle 
and the experience of neighboring particles 
[ 14]. 

In n-dimensional 
updated velocity and 
particle of PSO can 
follows [20]: 

search space, the 
position of each 
be determined as 

k+l k ( b k k) vi =w.vi +c1.r1. p esti -~ (9) 

+c2 .r2 .(gbestik- ~k) 

~k+l = ~k + vt-+1 (10) 

k (k k)· .. where x; = x;1 , ... , x;;, IS the positiOn 

of particle i at iteration k, vt = (v~, ... , v!) is 

the velocity of particle i at iteration k, 
pbestik is the best previous position of 

particle i at iteration k, gbestik is the best 

positiOn among all particles in the 
population, w is weight parameter, r1, r2 are 
random numbers between 0 and I and c1, c2 
are acceleration coefficients. 
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The general particle swarm 
optimization algorithm may be applied to 
any optimization problem. The steps of the 
conventional PSO algorithm are shown in 
Fig. I. 

Although the conventional PSO 
method has some advantages, it suffers from 
some drawbacks. It can be trapped in local 
optima so as to prematurely converge. This 
is due to that the performance of 
conventional PSO greatly depends on its 
parameters [ 14]. 

3.2 Hybrid Algorithm 
In order to overcome the drawbacks of 

conventional PSO, a chaotic particle swarm 
optimization (CPSO) method ·is proposed in 
[ 15] by combining PSO with adaptive 
weight factor and logistic equation. The 
adaptive weight factor can be defined as 
follows [ 16]: 

(11) 

Where Wmin and Wmax is the minimum and 
maximum value of w, respectively, f is the 
current objective value of the particle, ~vg is 
the average objective value of all particles in 
the population and fmin is the minimum 
objective value of all particles in the 
population. 
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Fig. 1 Flowchart of Conventional PSO algorithm 

To overcome the problem of trapping in 
local optimum in CPSO, chaos disturbance 
is used to jump out of the local optimum 
based on logistic equation in chaotic local 
search process as follows [14-16]: 

Where 'ZJ\k is the ith chaotic variable at 

iteration k, 'ZJ\k is distributed in the interval 

(0, 1.0) under the conditions that the initial 

'ZJ\0 
E [O,l]and that 'ZJ\0 ~ [0.25,0.5,0.75] as 

in [14]. The chaotic variable ~k can be 

defined using the following equation [14]: 
k 

'ZJ\k = ~ - Xmn,i , i = 1,2, ... ,n (13) 
~.i -Xmn.i 

Then the decision variable ~k+l can be 

calculated using this chaotic variable as 
follows [14]: 

k+l k+l ( ) . 1 2 Y. = Y . . + 7Y. Y . - Y . . , 1 = , , ... , n 
~~ ~~~ -1 ~~,1 -~,1 

(14) 
Based on the adaptive weight factor and 

logistic equation, the CPSO's procedures 
can be summarized as following [ 14-16]: 
1) Randomly initialize the position and 

velocity of each particle m the 
population. 

2) Calculate the fitness values of every 

particle. Then save the pbestik, gbestik . 

3) Use equations (9) and (10) to determine 
the position and velocity for the next 
iteration. 

4) Update the weight using equation (11 ). 
Then calculate the objective values of all 
particles in the population and save some 
of the best solutions. 

5) Execute chaotic local search based 
logistic equation using equations (12)­
(14) 

6) Update both of pbestik and gbestik. 

7) Check if the maximum number of 
iterations is reached. If yes, save the best 
solutions. Otherwise, let mcrease the 
iteration number by 1 and go to Step 2. 

The performance of conventional PSO 
greatly depends on its parameters. So, 
selecting these parameters IS a very 
important step m the PSO method. To 
overcome the drawbacks of conventional 
PSO and to choose the best value of these 
parameters in this work, a hybrid chaotic 
particle swarm optimization and genetic 
algorithm (HCPSOGA) is introduced. The 
HCPSOGA method can be derived by 
combining the CPSO [ 14-16] and GA where 
the GA is used to optimize the parameters of 
CPSO. These parameters are the 
acceleration factors ( c1 and c2) and 
minimum and maximum values of weigh 
factor (wmin and Wmax). 
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The steps of HCPSOGA method can 
be summarized as following: 

Step I: Initialize the parameter: 
In this paper, the real value GA is used 

where real values of the parameters can be 
used directly to from each individual 
(chromosome). The acceleration and weight 
factors are randomly initialized to generate 
the chromosome. Each chromosome (C = 
{ CJ, c2, Wmin, Wrnax}) represents the optimal 
value of the parameters of CPSO. 

Step 2: For each chromosome: 
Step 2.1: Generate the initial particle swarm: 

Initialize the position and velocity of 
each particle in the population. 

Step 2.2: Evaluation of each particle: 
Calculate the fitness values of every 

particle. Then save the pbestik, gbestt 
Step 2.3: Update the velocity and position of 
each particle: 

Use equations (9) and (1 0) to 
determine the position and velocity for 
the next iteration. 

Step 2.4: Apply adaptive weight factor: 
Update the weight using equation 
(11). Then calculate the objective 
values of all particles in the population 
and save some of the best solutions. 

Step 2.5: Apply logistic equation: 
Execute chaotic local search based 
logistic equation using equations (12)­

(14). Then update both of pbestt and 

gbestt . 
Step 2.6: Check the stopping criterion of CPSO: 

In this paper, a predetermined 
maximum number of generations 
(Gmax pso) is used as a termination 
condition. If the maximum number of 
generations is not reached, steps 2.2 to 
2.5 can be repeated until the stopping 
criterion is satisfied. 

Step 3: Selection: 
A standard roulette wheel selection 

method is employed to select the fittest 
chromosomes from the current population. 
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Step 4: Apply GA crossover: 
The crossover operator is used to 

produce two offspring from two parents 
chosen by roulette wheel selection method. 
The line arithmetical crossover is used as 
described in [21]. 

Step 5: Conduct GA mutation: 
The mutation operation can contribute 

effectively to the diversity of the population. 
The Gaussian mutation has been used in this 
work as described in [21]. 

Step 6: Elitist strategy: 
The chromosome that has the worst 

fitness value in the current generation is 
replaced by the chromosome that has the 
best fitness value in the old generation. 

Step 7: Check the stopping criterion of 
GA: 

In this paper, a predetermined 
maximum number of generations (Gmax GA) 

is used as a termination condition. If the 
maximum number of generations is not 
reached, the steps 2 to 6 can be repeated 
using the chromosomes in the new 
generation until the stopping criterion is 
satisfied. 

Step 8: After the termination condition is 
satisfied: 

The chromosome which gives the best 
performance in the last generation is 
selected as the optimal values of CPSO's 
parameters and the corresponding fitness 
value is considered as the optimal solution 
of the MAED problem. 

4. Numerical Results 
Different test systems are used to 

show the effectiveness of the HCPSOGA 
method. In the implementation of 
HCPSOGA method, some parameters 
should be selected. The selection of suitable 
values of these parameters is very important 
in improving the speed of convergence and 
solution's quality. The parameters of CPSO 
( c~, c2, Wmin and wmax) are optimized using 
GA for .each test system. While the best 
value of other parameters for each system 
were selected from empirical tests by 
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running the algorithm several times with 
different parameters combinations. The 
HABFGA method is implemented in 
Pentium 4 personal computer with 2.8 GHz 
clock frequency and 2 GB of random access 
memory using MA TLAB R20 12a. 

There are two different test cases are 
considered in this work. They are: 
• Test system 1: This system consists of 

10 generators divided into 3 areas. The 
valve-point effect, multi-fuel sources 
with 3 fuel options and transmission 
loss are considered in this system. 

• Test system 2: This system consists of 
40 generators divided into 4 areas. To 
be able to compare our results with 
other published methods, the valve­
point effect is considered while multi­
fuel sources and transmission loss are 
not considered in this system. 

4.1 Test System 1 
This system has 10 generation units 

divided into 3 areas. The first area consists 
of the frrst 4 generators. The second area 
consists of the next 3 generators while the 
third area contains the last 3 generators. The 
data of this system can be found in [ 11]. 
While the B-coefficients data can be found 
in [4]. The GA parameters are population 
size = 100, number of generation = 200, 
crossover probability = 0.8 and mutation of 
probability = 0.1. The parameters of CPSO 
are number of particles in the swarm = 1 00 
and number of iteration = 200. 

In this case, the performance of 
HCPSOGA method is compared with 
teaching learning-based optlill.lzation 
(TLBO) [4], differential evolution (DE) [4], 

evolutionary programming (EP) [4] and real 
coded genetic algorithm (RCGA) [4] 
methods to show the effectiveness of the 
presented method. For the sake of fair 
comparison with other methods valve-point 
effect, multi-fuel sources with 3 fuel options 
and transmission loss are considered. Also, 
the load demand in the frrst area is assumed 
to be 50% of the total load demand (2700 
MW), while the remaining demand is shared 
equally between the second and third areas 
(25% for each area). Table 1 shows the 
power flow limit between different areas. 
Tables 2 and 3 show the results obtained 
from HCPSOGA, TLBO, DE, EP and 
RCGA methods. The results of the 
published methods used in this comparison 
have been directly quoted from their 
corresponding reference [ 4]. The cost 
convergence characteristic of HCPSOGA 
method is shown in Fig. 2. 

Table 1, Power Flow limit between Different Areas 
in Test System 1. 

Area Power flow 

From To MW 

1 2 100 

1 3 100 

2 1 100 

2 3 100 

3 1 100 

3 2 100 
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Table 2, Simulation Results for Test System 1. 

Area Power TLBO [4] DEI4 EP [4) RCGA [4) HCPSOGA 
(MW) Fuel Fuel Fuel Fuel Fuel 

PI 224.31 2 225.45 2 223.85 2 239.09 2 223.89 2 
Area Pz 210.66 1 210.17 1 209.58 1 216.12 1 210.52 1 

1 p3 491.69 2 491.28 2 496.07 2 484.15 2 490.47 2 
p4 240.63 3 240.89 3 237.99 3 240.62 3 241.08 3 

Area Ps 249.57 1 251.01 1 - 259.43 - 1 .259.66 1. 248.66 1 

2 
p6 235.89 3 238.86 3 228.94 3 219.91 3 236.24 3 
P, 263.74 1 264.09 1 264.11 1 254.51 1 263.68 1 

Area 
Ps 237.13 3 236.99 3 238.23 3 231.36 3 237.82 2 
p9 332.59 1 326.54 1 331.29 1 341.96 1 333.25 3 3 
P1o 249.46 1 250.33 1 246.60 1 248.28 1 249.99 1 

PLos_~I (MW) 17.30 17.27 17.49 17.03 17.24 
PLoss2(MW) 9.66 9.77 10.01 9.70 9.71 
PLo .. 3 (M_}y) 8.73 8.59 8.61 8.94 8.66 
Total Loss 

35.69 35.63 36.11 35.67 35.61 (MW) 
Cost ($/h) 653.99 654.02 655.17 657.33 650.97 
Time(s) 61.67 65.04 78.06 83.84 103.72 

Table 3, Tie line Power Flow Of Test System 1. 

Tie-line flow Tie-line power flow (MW) 
From To TLBO [4) DE [4] EP [4] RCGA [4] HCPSOGA 
Area 2 Area 1 100.00 99.47 100.00 93.17 100.00 
Area 3 Area 1 100.00 100.00 100.00 93.87 100.00 
Area 3 Area 2 35.46 30.28 32.52 43.78 36.04 
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Fig. 2 Cost convergence characteristic of HCPSOGA method for test system 1 

These results show the superiority of 
the HCPSOGA method over other published 
methods. It gives total costs less than those 
from other methods. 

4.2 Test System 2 
This system has 40 generation units 

divided equally into 4 areas (l 0 generators 
for each area) with total load demand 10500 
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MW. The data of this system can be found 
in [22]. The GA parameters are population 
size = 100, number of generation = 500, 
crossover probability = 0.8 and mutation of 
probability = 0.1. The parameters of CPSO 
are number of particles in the swarm = 1 00 
and number of iteration= 500. 

In · this case, the performance of 
HCPSOGA method 1s compared with 
artificial bee colony optimization (ABCO) 
[23] and DE [23] methods to show the 
effectiveness of the presented method. In all 
methods, the valve-point effect is considered 
while multi-fuel sources and transmission 
loss are not considered. Also, the maximum 
number of iteration is chosen to be 500. Fig. 
3 shows the load demand of each area and 
power flow limit between different areas. 
Tables 4 and 5 show the results obtained 
from HCPSOGA, ABCO and DE methods. 
The results of the published methods used in 
this comparison have been directly quoted 
from their corresponding reference [23]. The 
cost convergence characteristic of 
HCPSOGA method is shown in Fig. 4 . 

Again, the results prove the 
superiority of the HCPSOGA method over 
other methods. 

4.3 Discussions 
To investigate the effectiveness of the 

HCPSOGA method, its performance IS 

compared with some published. These 
methods are TLBO, DE, EP and RCGA 
methods for test system 1 and ABCO and 
DE for the test system 2. The results of these 
published methods have been directly 
quoted from their corresponding references. 
From the above results, we can notice that 
the HCPSOGA significantly outperformed 
other methods used in comparisons for both 
test systems. 

The HCPSOGA achieved a cost of 
650.97 $/hand 123531.2 $/h for test system 
1 and 2, respectively which is a yearly 
saving of about 26455 $ and 4189032 $ 
compared to the lowest cost obtained by 
other methods in test system 1 and 2, 
respectively. Also, the efficiency of the 
HCPSOGA · method is proved in the large 
non-convex type problem (test system 2). 

Based on the above results, the 
HCPSOGA method has high-speed 
convergence, but its computational burden is 
high compared with other published method. 
The real life MAED problem is solved off 
line and solution time of several minutes is 
acceptable. This makes it possible to use the 
HCPSOGA method to solve the real life ED 
problem. 

5. Conclusions 
In this paper, a hybrid method called 

HCPSOGA was employed to solve the multi 
area ED problem with multiple fuel option. 
This hybrid method can be derived by 
combining PSO, adaptive weight factor, 
logistic equation and GA, so that the 
drawbacks of original PSO can be avoided. 
To show the feasibility and efficiency of the 
hybrid method, two commonly used 
standard test systems are used. The 
numerical results were compared with the 
recently reported approaches. The results 
revealed that the solution obtained by the 
presented method led to a smaller total 
generating cost than those obtained using 
other published methods: However the 
computational time of the presented method 
is higher than other methods, it is still 
acceptable for the real time applications for 
MAED problem. 
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Fig. 3 Four area system (Test system 2) 

Table 4, Simulation Results for Test System 2. 

Area 
Power ABCO DE 

HCPSOGA Area 
Power ABCO 

DE (23) HCPSOGA (MW) [23) (23) (MW) (23) 

P. lll.IO 93.08 ll5.01 Pz1 527.19 547.63 525.97 
Pz 109.98 109.06 ll0.18 Pn 502.08 523.49 500.08 
p3 100.92 89.75 101.52 plJ 530.37 522.63 532.34 
p4 190.00 116.95 195.20 Pz4 542.34 545.94 540.54 

Area 1 Ps 96.94 97.00 91.84 Area Pzs 520.25 523.66 519.21 
p6 96.97 140.00 93.90 3 Pz6 533.64 527.37 536.04 
p7 259.69 283.73 250.61 Pz1 10.00 10.00 10.00 
Pa 276.87 286.27 275.37 pll 10.00 15.79 10.97 
p9 300.00 284.91 302.01 P29 10.00 10.00 10.00 
PIO 130.69 131.64 130.19 PJo 96.77 93.03 95.37 
Pu 245.10 169.87 252.11 P_Jt 190.00 190.00 190.00 

Pn ·- 94.00 110.97 92.33 p32 168.68 157.89 169.92 
PJJ 125.00 229.89 120.41 p33 173.62 190.00 170.61 

!----'~· 

4J4.81 387.47 436.51 186.37 200.00 183.30 Pt4 p34 

Area 2 P,s 390.67 427.75 390.00 Area P3s 200.00 90.00 200.00 
pl6 395.00 478.28 391.22 4 p36 164.96 149.45 167.97 
pl7 500.00 490.18 500.99 p 37 92.56 110.00 90.06 
P1a 500.00 490.95 500.92 p38 96.99 88.16 100.89 
pl9 530.79 511.92 531.72 p39 109.82 25.00 112.31 
Pzo 514.41 511.82 513.88 P4o 431.40 538.47 438.50 

Cost ($/h 124009.4 124544.1 123531.2 
Time (s) 126.93 134.81 190.58 
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Table 5 fie Une Power Flow Of Test Sysi:em 2. 

Tie-line flow Tie-line power flow (MW) 

From To 
ABCO 

1231 
DE 1231 HCPSOGA 

Area 1 Area 2 191.71 200 190.99 

Area 3 Area 1 6.67 91.54 23.85 

Area3 Area 2 183.19 147.89 181.31 

Area 4 Area 1 86.86 51.08 48.01 

Area 4 Area 2 95.32 42.99 90.72 

Area4 Area 3 57.22 69.90 95.23 

X 105 

' 

1 .3 

1 .28 

.J::: 

~ 1.26 u; 
0 

<.) 

1.24 

1.22 

1.2 
50 100 150 200 250 300 350 400 450 500 

Iteration 
· L i l ' : ,· --~-

Fig. 4 Cost convergence characteristic of HCPSOGA m~thod for test system 2. 
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