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ABSTRACT

The geomerrically nonlinear elasto-plastic aualysis and buckling of perforated plates by the
finite element method is described Triangular elements are used to model the plates and a
number of solution refinements is discussed The elasto plastic stress strain relationships are
based on llyushin's approximate area yield function. Solutions are presented for axially
compressed square plates with central square and circular holes.

INTRODUCTION

1t is cften necessary to provide openings in thin plated structures such as cold formed steel
members, aeroplane tuselages, plate and box girders and ship struclures for accesses and
services. The presence of holes in such structures results in a redistribution of the membrane
stresses accompanied by a change in the buckling and strength characteristics.

The buckling of perforated plates subjecled to pure shear and untaxial and biaxial
compression has been investigaled by Rockey et al [ 1], Pennington-wann [2] and Shanmugam
and Narayanan [3] using the finite element wnetliod For pure shear. the buckling load decreases
continuously with the increasing size of the hole. However, for un-axial and biaxial
compression, the buckling load may increase with the increasing size of the hole due to the
redistribution of the membrane stresses towards the edges of the plate,
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Even lhough the buckling load may increase with the increasing size of the hole, it is not
o be expected that there will be a corresponding increase in the ultimate or collapse load. This
paper describes the buckding and geometrically nonlinear elasto-plastic analysis of perforated
plates by the finite element method. Results are presénted for uniaxially compressed square
plates with centrai circular and square holes.

Finite element formulations for buckling and geometrically nonlinear elasto-plastic analysis
have been presented elsewhere and only a brief outhne of the theory is presented herein:
Zienkiewicz [4], Kapur and Hartz [5], Roberts and Ashwell [6] and Crisfield [7).

I- ENERGY PRINCIPLES

The total polential energy V of a structural system can be defined by the equation

U

v=V,-] p.dg +[{] odefavol 0
in which,
Vo is the potential energy of the system prior 10 the application of external forces,
P represent Lhe external forces and corresponding displacement respectively,
d dimension of hole, and
G € represent the intemal stresses and corresponding strains.

1,5

Along any equilibrium path, V 15 constant. and hence the lirst and second varialions of’ ¥

along the equilibrium path, denoted by 8V and 32V, are zero. Form equation (1},

oV = Poy + o GedVol =0 "
W =~ Py, ~-+PEy, + I(qdzq +§5o‘r55;)a’1/0! =0 )

Rearranging equation. (3} gives;

8PSy, = ~2P6%g, +[(20,8%¢ + 60,66 JdVol @
Equation (4) provides the basis for incremental analysis of nonlinear problems. The right

hand side of equation (4)is 252Vp,where 62Vp being the second variation of V for stationary
values of the external forces assuming 6p, =0 When Szvp = 0, equation (4) is indeterminate

and hence the vanishing of Szvp indicates critical conditions on an equilibnum palth Critical

conditions occur therefore when;
5, ==p5q +[(05% ++ 85,08 Jdvol =0 5)
2. NONLINEAR STRAINS

An element of a thin plale of thickness t , Young's modulus E and Poisson's ratio v is
shown in  Fig. (1). The displacements in the X, y and z directions are denoted by u, v and w
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and the plate is assumed 1o have a small initial imperfection w,,. The nonlinear expressions for
Lhe membrane and bending strains are: Timoshenko [8]

r 2 2
£ e U, +03w, —w,
f _ . = 2_ d
\Em} = 5¥m = Vy -F'O.J(Wx Woy) (6)
}lxym uy+vx+wxw;r_wo.\woy

By | | AW W) | | A% a)
{gb} = by | T _Z(Ww _wcw) - _Z(Zy -Zw) :_Z{Z_ZU} %)
Yab —ZJ_'(WW —ww) '_2(/?-/&}' ﬁZa\)‘)
in which | &, is the nonlinear compressive membrane strain,
ey is the expression for nonlinear bending strain,
7 ami ¥ wn  are the membrane and bending shear sirains,

W, W are the displacement and the iutial imperfeetion in the plare,

and suffices x, y et¢.  associated with u, v and w denote differentiation

STRESS STRAIN RELATIONSHIPS
For an elastic material. the membrane forces per unit length, N, N | erc. and bending

stress resultants M, M, etc. , shown in Fig 1 are related 1o the strains by the equations

N} =INGN N = E]e)

(8)
vy =[mo MM = (e - 1) 9)
n which,
Mo 0 _‘
[E]=; E: v o | (10)
1-v) 0 6 (1-v)/2,
where
NM  are the membrane and bending stress resultant respecuvely
E 15 Young's modulus, and
v is Poisson’s ratio

The derivation of the elasto-plastic stress strain relationships, using an approximate area
vield tunetion proposed by Ilyushin, was presenied by Cristield [7]. The approximate yield

function proposed by [lyshin is of the lorm
¢ N L As MN +|6W<]
=" 2 g = Il
Yol V3t Yo oy (
im which; g,

5= W;\W] and

is the uniaxial yreld siress,
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N=N+N,~NN +3N
M=Mi+M)-MM, +3M] (12)
MN=MN, +M,N, -05MN +MN )+3M /N
During plastic flow, the state of stress remains on the yield surface and hence ;
- T
5t = {of I N} {oN}+ {of /oM} {sM} =0 (i3)
Assurming that equation {11} serves also as a plaslic potential function, the piastic strain
increments can be expressed as

{ser)=afotrany . {2"}=afot/om) (19)
in which; A is a positive scalar which defines the absolute magniwude of the plastic sirain

increments
The total strain increments are the sum of elastic and plastic components | hence

{o,} = {osr }+ {oel }
5N} = z[E]{é‘s‘m}_: r[E]{{fS&'m}‘ {‘5"’:1}}
i = el = ¢ et - o)

Solving equations (11} to (15) gives the elasto-plastic stress strain relationships in the form

(15}

N = [CCHoe, p+[CD]

Sz}
fa T = llﬁj
(oM} = [CD] {d¢,}+[DD){

nr}

4. FINITE ELEMENT ANALYSIS
Following well known finile element techniques and assuming the material remains elastic,
equation (3) can be reduced to the torm
s 1 «
SATINL PR -
5V, =~ {&] [KL]+ u[KG][{5a} =0 an
in which:
[KL] is the linear stiffness matrix,
{KG] the geometric stiftness matrix which depends on the state of stress prior to buckling,

L 18 a scaiar load tacior, and
16q) are the nodal displacement variables, which are linear functions,
2 . . -
and hence the term Pi5™q; vanishes Critical conditions occur when DET[[KL] + u [KG]]=0,

the lowest eigenvalue p defining the critical load tactor and the corresponding eigenvector the

buckled shape.
Using the elastic or elaslo- plaslic stress strain relationship as appropriate. equation (4} can

be reduced to the form .

{op} = [[KEP]+[KGEP]]{sq} (18)
in which; [KEP] depends on the material elastic constants and current state of stress and
[KGEP] depends also on the current geometry.
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Solutions of nonlinear problems were obtained by incrementing displacements and using a
mid increment stiffness reehnique discussed by Roberts and Ashwell [6]. Current states of
stress were reduced proportionately back o the vield surface to preveut the build up of errors.

The plates analyzed were modeled using toangular elements Bending action was
represented by nine degrees of freedom elements, the displacement function being defined in
1erms of area coordinates Zienkiewicz [4],

Membrane action was represented by six degrees of freedom elements, linear pelynomials
being used to define both u and v. In deriving the geometric matrices [KG] and (KGEP] in
equations (17) and (18), linear polynomials were used for u,v and w to ensure consiant
membrane steains throughout an element, which is advantageous for convergence

5- RESULTS

The incremental finite element program used in the analysis was developed by Grayson (9].
This program was tested by solving the problem of a simply supported rectangular plate
subjected to uniaxial compression. The loaded edges only are being constrained to remain
straight The plate was assumed 10 have an initial imperfection of the torm -

Wy = W, Sin(7) sin(5)

{19}
in which:
a.b are the dimensions of plale, and
wo . Woe are the initial imperfections

The number ol elements used 10 inodel the plate was 288 (12 x12 rectangular mesh) and the
results were obtained by incrementing the in-plane displacement of the load The results and
ather details of the problem are shown in Fig 2 and thereis an excellent agreement with

p :
g, are the

ewsling analvtical and finite element solutions carnied out by Cristieid {7]
average compressive membrane stress and strain respectively and £ is the yield strain

The main problem studied was that of a square plate with side length b, containing a central
circular or square hole of diameter or side length d. and subjected 1o uniaxial compression, The
loaded edges only were constrained to remain straight in the plane of the plate For

displacements normal w0 the plane of the plate, simply supported and clamped boundary
2

conditions were considered. Values of E, v and go were taken as 205000 N/mun™, 0 3 and

2 . . . )
245 N/mm™ respectively. For simply supported plates, wo was assumed as given by equation
{19y with a =b while tor clamped plates wo was assumed (o be of the form -

w, = w, (1—cos 2mx/ b){1—cos 2ay / b)/ 4
The initial central detlection wye was (aken as

w,, = 01456 (o, /E)"
which has been recommended in the proposed British Code of Practice for the Design of Steel
Bridges

A number of radial and rectangular meshes were used (o test couvergence tor the
eigenvalue solution. When convergence was satisfactory, the same mesh was used for the
corresponding nonlinear problems The critical compressive membrane stress o, for initially
ila square plates can be expressed as : Timoshenko [8]
o, = KeiE/2(i- v R’

&

(20)

2
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In which K; is a dimensionless buckling cocfficient. K values for perforated plates, obrained
from Lhe present analysis arc shown in Fig.(3) and there is general agreement with existing
results . Pennington-Wann {2] and Shanmugam and Narayanan (3].

The corresponding results for the elasto-plastic analysis are shown in Fig.{(4} in which T
is the average compressive membrane stress at failurc. There is no significant difference in the
results for square and circular heles, To allow for variations in E and o the results can be

normalized in accordance with von Karman's formula for the ullimate strength of uni-axially
compressed plazes,

5, ={c.o,)’ (22)
by replacing b/t by (b/t)* where
(b/0)*=(b/1)(205000 &, /245E )"

CONCLUSIONS

(23)

The buckling load of a uni-axially compressed plate with a centrally placed hole is almost
independent of the hole size up to half the width of the plate and may even increase for larger
hole sizes

The ultimate toad of a uni-axiallv compressed plate with a centrally placed hole is influenced
signiticantly by the size of the hole. The reduction in the uflimate load is most proneunced for
lower b/t values
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