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ABSTRACT

Most optimization models for management of coastal aquifers have ignored the effects of uncertainty due
to spatial variability of hydraulic conductivity. This research explicitly incorporates uncertainty, in the
hydraulic properties of cuastal aquifer, inte a procedure for optimal management of multi objectives, The
sharp interface philosophy is adopted to simulate dynamics of the freshwater flow. Finite Element
Method (FEM) was applied on the linear formulation of Strack o simulate the hydraulic response of tlie
studied aquifer under different suggested rates of pumping. The LU-decomposition method was exploited
to inverse the conductance matrix, that significantly decreases the computalion time. The constraint
technique was applied to simplify, without any relaxation, the multi objective management problem Lo
single objective management problem. Genetic Algorithm (GA) was used to solve the nonlinecar
optimization problem. Two approaches were used to incorporate uncerlainties of the hydraulic
conduciivity field through the management process. The first one solved the problem for mult
realizations of hydraulic conductivity simultaneously. Then the post-optimality Monle Carlo (MC)
analysis was performed to assess the reliability of the optimal solution. While the second approach
applied the MC simulation method to the studied prolxlem. A Fortran program was developed to apply the
present methodology on a hypothetical coastal unconfined aquifer.

K ey Words: Coastat 4 quifer- Strack's Formutation- Multiple Objectives Management- Uncertainty-
Monte Carlo- Mudtiple Realization- Constraint Method.

1-INTRODUCTION

Saltwater intrusion management associated  with  (he  simulation-
problems are usually multi-objective. optimization approach to coaslal aquifers
One of the most difficult problems management is incorporating effect of
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the sharp interface modeling uncertainty
into the optimal decision making
process. Most  coasta! aquifers
management  strategies have been
assumed to be deterministic, that the
mode! used to simulate the aquifer is
assumed to be without error [J, 2].

Precise field measurement for
different  variations of  hydraulic
conductivities through any studied
aquifer is impossible subject. Actually,
only the expertise insight of the
hydrologist and/or a limited field
measurements can be used to estimate
approximate relations that can represent
the unknown hydraufic conductivity
field. Due to errors associated with field
measurements and lack of data, the
hydraulic conductivity field is always
represented as a random field. That
means the input data (hydraulic
conductivitics) through the studied
domain are random variables,
consequently the obtained output
responses are also random variables.

To date, the literature dealing
with saltwater infrusion management
models under uncertainty is unavailable,
whereas that dealing with groundwater
management models under uncertainty is
available in several papers. Wagner [3],
applied the first-order first and second
moment analysis to transfer uncertainty
of the hydraulic conductivity to the
management problem concemed with
groundwater remediation. Also, he
applied the chance constrained method
to  determine  best strategy for
management under a pre-specified
degree in reliability. This scheme, till
date, is never used within the literature
concerned with management of coastal
aquifer. The same work was repeated
with Sawyer [4], but with unknown
coordinates of the well locations. Angulo
[5], used a utility criterion (weighted
sum approach) in terms of construction,

monitoring, and remediation to multi
objective management of groundwater
recovery. The drawback of his scheme is
the necessity to know in advance the
preference of each objective with respect
to the others. Aly [6], used the artificial
neural network (ANN) to simulate the
hydraulic response for the contaminated
aquifer due to different stresses, and
applied GA to find the optimal
remediation strategy. Fortunately the
LU-decomposition can be exploited in
the present work, that is even superior to
the ANN from the accuracy peint of
view.

Bakr [7], studied management lor
groundwater remediation process under
uncertainties of hydraulic conduclivities,
that concluded from the measured head
and concentration data. This was
achieved through the simultaneous
indirect inverse for the simuiation
models of both the groundwaler flow
and the dispersion of pollution problems.
He concluded that increasing the total
pumping rate would increase the
reliability of the aquifer remediation.

In this research the mulii-
objective management schemes that
based on: 1) the maximization of the
pumping rate of freshwater, 2} the
minimization of land subsidence due to
excessive  pumping (equivalent to
minirnization the drop in water table
level), and 3) the minimization of
destructive land at sea side due to
saltwater intrusion  {equivalent to
minimization of intruded volume of
saltwater within the aguifer), were
studied under uncertainty of the
hydrautic conductivity field. In this
work, log-hydraulic conductivity was
assumed as a random field and
represented with uncorrelated Gaussian
normal distribution field. That mulii
objectives, nonlinear, stochastic,
optimization problem of coastal aquifer
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is proposed for the first time in the
literature.

The sharp interface approach [8]

was adopted to simulate the dynamics of
the steady flow within the freshwater
zone in case of static/stagnant saltwaler.
Strack’s linear formulation [9, 10] of the
potential function was used instead of
the nonlinear flow equation that adopts
the piezometric head of the flow as a
dependent variable [8]. This linear
formulation simplified the sclution
process without any need for toe
tracking. Also, it facilitated exploiting
the LU-decomposition method [11} to
inverse the conductance matrix ence and
using its inversion many of times during
the optimization process, that made the
computation time viable.
Genetic algorithm method in
combination with the constraint method
were used to optimize different
conflicting non-commensurable
objectives adopted in this work and
obtaining their Pareto frontier. This
stochastic  optimization method s
superior to any gradient method.

Two management model
formulations are presented here. These
formulations were suggested previously
by Wagner [12] to study the reliability in
optimal ground water remediation. The
first, termed the multiple realization
management model, simultaneously
solves  the nonlinear  simulation-
optimization problem for a sampling of
hydraulic conductivity realizations. The
second model, termed the Monte Carlo
(MC) management model, solves the
nonfinear  simulation-  optimization
problem individually for a sampling of
hydraulic  conductivity  realizations.
These two methods provide a
relationship between maximum pumping
rate and reliability for pre-specified
magnitudes of the other two objectives.

2-STRACK’S FORMULATION

Strack linearized, without any
relaxation, the nonlinear flow equation
that utilizing the piezometric head of the
freshwater as a dependent variable.
Instead he adopted the potential function
¢ as the dependent variable. Thus for
static saltwater, the freshwater flow can
be represented as, [9, 10]:

Q[K@}E[K%}
ax\ adx ) oyl oy
S 5(c-x,)0,5(y-3,)=0 )

where, ¢ is the potential function (Lz), K
is the hydraulic conductivity (L/T), x and
y are rectangular coordinates (L), O, is
pumping or rccharging rate at well |
(Lj/T), o (z} is Dirac delta equal to 1 if z
is zero otherwise equal 1o 0.0, and s is
number of wells through the studied
domain. Figure 1 shows the vertical
cross-section of unconfined aquifer.
Distinction has been made between two
zones, a freshwater zone (zone 1) and a
freshwater-saltwater zone (zone I1).
Strack demonstrated that ¢ is continuous
across the two zones, and can be defined
as (for unconfined aquifers), [9]:

¢ = -;-[hz - (P; !p_f )f/z]for zone ! (2)

b= : %)[h ~df forzone Il (3)

where, 4 is the water (able head above
the impervious bed of the aquifer (L), d
is depth of sea water above the aquifer
bed (L}, and p;, gy are the saltwater and
freshwater densities respectively (M/L?).
The two zones are separated at
piezometric head h,. equal to (p/ppd,
consequently the potential gy between
the two zones should be, [9]:

¢ e =L0¢ 1) (050 20)- & 4)

The following boundary conditions were
used in this research, Fig. 2:
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Figure 1. Vertical cross-section of
unconfined coastal aquifer.
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Figure 2. Plane of coastal agquifer and
boundary conditions.

where, g, is rate of water enters the
aquifer per unit width (LD, S
represents seepage face height at sea side
(1), that is equal to MP, Figure 1.
Seepage face height can be assumed
from Glover’s analytical solution as,
[10]:

S=(Qne/YD)/(K {ps'pf}/,os) (8)
where, One is net freshwater recharges
out the aquifer at the sea side (L/D), YD
is total length of the sea boundary (L),
and K is assumed equal to average
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hydraulic conductivity along the sea side
for heterogencous aquifers (L/T).

Finite element method (FEM)
(13, 14] was used fo solve eq. | for
different vectors of pumping rates from
the existing well system. In this research
linearity of Strack’s formulation was
exploited by inversing the conductance/
stiffness matrix once and using its
mversion numerous times through the
optimization process. It must be noticed
that there js a conductance matrix
corresponding o every realization from
the hydraulic conductivity random field.

3-CONSTRAINT METHOD

The solutions of a multi objective

problem are referred to in the literature
as non-inferior, efficient, Pareto-optimal,
and non-dominated. Solving a mulli
objective optimization problem entails
finding a set of non-inferior solutions.
If the decision variables are represented
by the wvector @, and the multi
objectives by Z; to Z,, where # is the
number of objectives. Then, a solution of
a multi objective optimization problem,
0./, is said to be non-inferior if there
exists no other feasible sclution Q.
belongs to the decision space such that
Z{0) < ZL0Q.) for all i=12..,n{ in
case of minimization problem) wilh
strict inequality for at least one
objective. In the present work different
multi  objectives are  conflicting
functions. To generate the ftrade off
surface between these objectives a
technique for the generalion of non-
inferior solutions is required. The
technique selected in this paper is the
constraint method. It operates by
optimizing one objective function while
all other objectives are consirained to
some feasible values [15].

The main drawback of the
constraint method is the necessity of
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solving the optimization problem
itcratively for every selected constraint.
Therefore, computation time increases
exponentially with number of objectives.
GA was selected to find optimal sotution
of the present problem. In contrast to any
gradient  optimization method, this
stochastic optimization method can
easily handle different  objectives
simultaneously. That means i1 can
produce multiple non-inferior solutions
from solving only one oplimization
problem. '

Cieniawski [16], used different
forms of GA to solve two objectives for
groundwater monitoring problem. He
applied: 1) Pareto optimal ranking
formulation, 2) vector-evaluated GA
formulation and 3) combination of the
above the two formulations (1 and 2), to
handle his problem. Cieniawski reported
that none of the suggested GA
formulations had the ability to gencrate
the entire trade-off curve in a single
iteration. These GA formulations search
in random directions, consequently non-
uniform set of non-inferior solutions are
always obtained. In the present problem
constant and uniform set for the non-
inferior solutions must be determined to
facilitate  determining  probability/
reliability associated with each non-
inferior solution. Hence, simple GA
formulation that can be adopted for only
single objective function will be used
through this work, GA is used to find
non-inferior/foptimal  solution  corres-
ponding to optimal solution of one
objective function (maximum pumping
rates) that was restricted with a pre-
specified feasible values for the other
two objectives functions. Hence, that
scheme can produce a uniform
distribution of the non-inferior solutions,
that facilitate determination of reliability
without any interpolation error.

4-MULTIPLE REALIZATION

MODEL
This stochastic medel [12], is a
nonlinear  simulation-  optimization

problem in which numerous realizations
of the random hydraulic conductivity
field are considered simultaneously. The
mathematical formulation of the multiple
realization mode! within the constraints
method is:

maximize{Z1(0,)] ]
Subjected to the following constraints:

QHmrer < Qr = Qu-upper

i=12 ... .nw (1M
and,
minZ;(Quw, Koju 2 Dy Z3(Qws Koy < D3
Jorn=12 . NR (10

where, min means minimum, Z;( ) is the
objective function that represents total
extracted freshwater divided by the
constant magnitude of freshwater enters
the aquifer , Z; ¢ ). objective function
represents height of water table level
above mean sea level at the upstream
side of the studied aquifer for realization
n {upstream nodes of the Finite element
mesh were used as control points) (m),
Z3( )n third objective function that
represents truded volume of seawater
within the aquifer at realization »n
(million w"), aw is number of wells
through the studied domain (number of
decision variables), @, is a vector of aw
decision variables (rate of pumping from
every well), and O, Qitower, Qrupper are
rates of pumping from well { and its
lower and upper limits respectively, K, is
a vector of different hydraulic
conductivities associated within different
etements at realization n, MR is number
of hydraulic conductivity realizations
and D D; are the pre-specified feasible
constraints  subjected to  objective
functions 2 and 3 respeclively. By
solving eqs. 9-11 iteratively for feasible
magnitudes of D; and Dj their non-
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dominate solutions can be obtained
through the GA.

Once the hydraulic conductivity
realizations are generaled the nonlinear
optimization problem is solved for the
NR realizations simultaneously.
Therefore the constraints, Eqs. 10 and
11, must be satisfied for every
realization. It is as if a single pumping
strategy is designed to be successful for
each of the NR different aquifers
(realizations). _

For a thorough investigation of
the effects of uncertainty due to spatial
variability of the hydraulic conductivity,
the multiple realization management
model would have to be performed using
a large number of hydraulic conductivity
realizations. Number of multiple
redlizations was restricted to 20 in this
work. With this limitation, it can not
assumed the optimal management
strategy is feasible for all possible
conductivily realizations, Therefore, a
post-optimality  MC  analysis  1s
performed to assess reliability of the
non-dominant/optimal solutions. That
means the non-dominant sojutions must
be checked against another conductivity
realizations to estimate the reliability
degree corresponding to these solutions,

5-MONTE CARLO MODEL
This second stochastic model
solves a series of individual optimization
problems, each with a single realization
of hydraulic conductivity. Therefore, if
there are NM hydraulic conductivity
realizations, the MC simulation model
will providle NM optimal Pareto
frontiers. For deterministic optimal
solution of one conductivity realization
the following equations must be solved:
maximize [Z1(Qw)] (12)
Subjected to the following constraints:
Qhiower £ S Qrgper  1=1,2,...,8W (13)

and,
minZy(Qw,) 2 D,
Z3(0.) < D (14)

Equations 12 to 14, must be
resolved for NM realizations.
Uncertainty of the hydraulic
conductivity  field would  produce
different Pareto frontiers, one for every
conductivity realizations. Each of the
NM  deterministic  Pareto  f{rontiers
obtained from the MC deterministic
management model represents a random
sampling  from the  probabiiity
distribution  function (pdf) of the
uncertain/random Pareto frontier.

Any outpul variable ¥ can be
represented through normal distribution
as suggested by the central limit theorem
{17]. Then the mean and the standard
deviation of that wvariable can be
concluded as, [18]:

==V 15
H Nr\szza,:i )
o ,
= V.—u. i 16
v NM—IE{;{ eul} {16)

where, u, and oy’ are the mean and the
standard deviation of output variable V.

6-GENETIC ALGORITHM

This techmque is a search
method that uses the mechanisms of
natural selection to search through
decision space to optimal solutions. GA
has shown to be valuable tool for solving
complex optimization problems in a
broad spectrum of fields. The GA-based
solution method can generate both
convex and non-convex points of the
trade-ofT surface, and accommodate non-
linearities within the multiple objective
functions. GA consists of three basic
operations [19]: 1) selection, 2)
crossover (mating), and 3) mutation. In
using GA, several vectors, or strings
which represent different decision sets
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are formed randomly. These strings are
evaluated on their performance or fitness
with respect to some objective functions.
The following objective function F Is
used in this work:

N[ nw e
F=Z{ZIQW-p..&'.]—sz& —m.H}(m
r=l | w=l o=l

where, p;, ps, and p; are different
penalties respectively corresponding to
1) violation of saltwater at well w, 2)
decreasing height of water table level
above mean sea level at control node ¢
than the pre-specified constraint D, and
3) increasing the intruded volume of sea
water within the aquifer than Dj, f, is
the Heaviside unit step function that
equal to one only when violation exists
at j otherwise diminishes to zero, and nc
are number of control nodes at the
upstream side of the aquifer. It must be
noticed that the above function is
straightforward applicable to the multi
realization model. In case of MC model
only one conductivity realization must
be solved every time, so the ¥R in eq.17
must be replace with one.

Abdel-Gawad  [20],  studied
behaviors of different forms of genetic
algorithms, on the convergence rale
towards the final optimum. He
concluded  that best  formulation
composed from: real coding, uniform
crossover, modified mutation, constant
value of penalty. That formuiation of GA
was adopted within the present research.
The tournament strategy was applied for
both of replacement and reproduction
Process,

7-STEPS OF SOLUTION

A Fortran program that was
previously written to handle
deterministic multi objective

management problem is mod:ified to
incorporate the reliability effect. For the

multiple realization stochastic model the

following main steps were applied:

1) Generate NR recalizations of the
hydraulic conductivity field.

2} Calculate the conductance matrix
corresponding lo every realization
and inverse 1t  with the LU
decomposition method [11]. Store
the NR inverted matrices for
subsequent calls.

3) Apply GA for all realizations
simultaneously to find non-inferior
solution corresponding to the pre-
assumed feasible magnitudes of the
constraints D; and Dj; During the
oplimization process only load
vector corresponding to  different
pumping rates are changed, the
analogy hydraulic responses for
different realizalions can be easily
calculated by only multiplying the
inverted matrices with non-zero
rates of pumping.

4) Repeat step 3 several times for
different feasible magnitudes of the
constraints 0> and 2;. This process
generates the trade-off surface
between different objectives (Pareto
frontier).

The MC model used the same
previous steps with minor modifications:
a) Replace VR with 1.

b) Repeat steps 1 to 4, NM times, one {or
every conductivitly realization.

¢) Determine the mean and standard
deviation for every output variable.
Different realizations generated with

the MC model were used to test the post-

optimality of the mulliple realization
solution.

8-HYPOTHETICAL AQUIFER

Coastal  unconfined  aquifer
stmilar to that shown in figure 2, is
suggested in this paper. The aquifer is
5500m parallel to the sea (y-direction)
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and with 4000m perpendicular 10 the sea
(x-direction). The depth of the aquifer
below mean sea level is taken equal to
{5m. The aquifer has no flow boundary
at the BC and AD sides. The sea
boundary 4B is controlled by Dirichlet
boundary condition at the sea side, Eq. 6.
The east boundary CD has constant
uniform discharge of groundwater flow
qu=1.0m/day/m”.  The logarithm of
hydraulic conductivity random filed is
assumed as a normal distribution with
mean gy =2.0, and standard deviation
SY= oy =10 1.5 2.0. The following
data are assumed through the present
study: nw =[5, p,=1.025 g/lenr’, pr=1.0
g/cm’ Table 1, contains different data
about coordinates and upper and lower
limits of pumping rates (decision
variables) for the existing well system.

Table 1, Cartesian coordinates, pumping
rates limits for the well system.

Well | X- (m)| Y- (m} | Lower | Upper
No. Limit of | Limit of
Pumping| Pumping]
(m’/day)| (m*/day)
I 1000 | 5500 150 600
2 | 1700 | 4100 150 1300
3 | 1500 | 3850 150 1100 |
4 | 1200 | 3400 150 800
5 | 1700 | 3200 150 1300 |
6 | 1800 | 2700 1350 1400
7 | 3500 | 2500 i50 1500 |
8 | {600 | 2200 | 130 1200
9 7600 | 1800 | 150 | 1200
10 | 1300 | 1400 150 1100
1| 2000 | 1000 150 1500 |
12 | 1000 | 800 150 600
13 | 1600 [ 500 | 150 | 1200
14 | 3600 | 200 150 1500
15 | 1400 0 150 1000

The aquifer is discretized into
250m X 250m finite elements, with
hydraulic conductivity constant within
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each cell. Quadrilateral elements with 4-
nodes were used 1o simulate the aquifer.
Therefore the continuously varying
hydraulic  conductivity  field was
represented by 352 discrete hydraulic
conductivity zones. The resulting finite
element model had 391 nodes and 352
elements.

The following data were used
with genetic algorithm:  number of
individuals= 100, number of generations
= 50 crossover ratio=0.75, mutation
ratio=0.15, seed number = -]
probability  of switching  off  any
well=0.3, py= 2000m’ /day / intruded
well, py= 500 m’ /daytupsiream node,
pi= 10000 m’ /day/realization,

9-RESULTS AND DISCUSSION

The previous hypothetical aquifer
was analyzed here with both the mull
realization method and the MC method.
Three  objective  functions  were
considered during the management
process: 1) objective function (Z1)
represents ratio of maximum pumping
rate of freshwater from the aquifer (total
pumping rate divided by total freshwater
enters the aquifer), 2) objective function
(£2) is the minimum height of the water
table level above mean sea level at
upstream side of the aquifer (m), 3)
objective function (Z3) is volume ol
intruded saltwater within the aquifer in
million of cubic meters.

The constraint method was
adopted to simplify the problem to one
objective only. So, all objective
functions except one must be pre-
specified at feasible values. To obtain
feasible ranges of different constraints
the deterministic problem must be solved
first for one or two conductivity
realizations. From the calculated Pareto
frontiers, reasonable assumptions for the
feasible ranges can be considered.



Mansoura Engineering Journal, (MEJ), Vol. 29, No. 4, December 2004. C. 23

The feasible range for the height
of the water table level above mean sea
level at upstream side of the aquifer is
taken 5 m to 17 m. While, feasibie range
of intruded volume of salt water through
the aquifer is taken /1 million m’ 1o 18
million m’. The Pareto frontier is
specified at different combination of the
following constraints: D,= 5, 7, 9, /1,
13, 15, 17m, and D3=11, 12, 13 14,
15,16, 17, 18 million m’. That means for
every Parelo frontier 56 non-dominated
uniformly distributed solutions was used.

Figure (3a-g), show results of the
multiple  realizations  method  for
maximum ratio of extracted freshwater
Z! against the other two objective
functions Z2 and Z3. The problem is
solved for number of conductivity
realizations MR equal to 70 and number
of generations within the genetic
algorithm NG equals 50, the standard
deviation for the logarithm of the
hydraulic conductivity SY = oy are taken
equal to 1.0, 1.5, 2.0 at Figures (3-a,
3-c) and (3-e) respectively. The same
parameters are restudied in Fig. (3-b, 3-
d, 3-f) but for number of conductivity
realizations MR equal to 20. To study the
effect of number of generations adopted
by the GA method on final solutions two
runs were carried out for simulations
which have §Y = gy = 2.0 with number
of generations NG equal to /00 instead
of 50, Fig. (3-g and 3-h).

From different Pareto frontiers in
figure (3a- 3h), the foilowing notes can
be recognized: 1) increasing both AR
and SY decrease optimal magnitudes of
objective function Z/, but SY has a
pronounced effect than NR |, 2)
increasing number of generation from 50
to /00 has a minor effect on Pareto
frontiers. Due to the stochastic behavior
of the GA method, non-dominated
solutions have little enhancements at

some locations and became bad at other
ones, 3) for all runs height of water table
level above mean sea level controls the
management results for feasible range of
Z2 from I7m (o [3 m, for lesser
magnitudes of Z2 both of the two
objectives Z2 and Z3 have an effect on
different Pareto frontiers.

A post-optimality Monte Carlo
analysis is performed to assess reliability
of different Pareto frontiers shown in
figure (3a- 3h). [n this MC analysis one
hundred conductivity realization were
generated. For each realization the
different decisions variables, calculaled
from the multiple realization method at
different non-dominant solutions, were
applied. The reliability (at different
uniformly distributed non- dominant
solutions) was then calculated by
determining  the  percentage  of
realizations for which there were no
pumping of salt water at well locations,

Figure {d4a- 4h), shows different
reliabilities corresponding to  various
runs presented in figure (3a- 3h). It can
be noticed that increasing both
magnitudes of standard deviation of
logarithm of the hydraulic conductivily
{SY) and height of water table level
above mean sea level (Z2) increase
significanlly  the  reliability  level.
Increasing number of realizations AR
form /0 to 20 or increasing number of
generations NG from 50 to {00, has a
minor effect on the estimated reliability,

Results of the MC method are
shown in figure (5a- 5h), with the same
parameters adopted in figure (3a- 3h).
One hundred conductivity realizalions
were considered and solved individually.
Mean and standard deviations at
different non-dominant solutions were
calculated using Eqs. (15 and 16). From
figure (5-a, 5-¢, and 5-¢) the ensemble
mean of different realizations decreases
as SY creases. The mean values arc
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mainly dependent on objective function
Z2 for magnitudes between [7m and
l4m. As Z2 increases its effect on 2/
decreases. For values of Z2 less than 8m
only objective function Z3 control the
non-dominant solutions. Figure (5-b, S-
d, and 5- f) shows that standard
deviation of objective function ZI
increases as both Z2 and SY increases.
As SY decreases from 2.0 to 1.0 the
effect of objective function Z3 on the
standard deviation of objective function
Z1 diminishes. Also, it can be noticed
that increasing the ~number of
generations NG from 50 to /00 has a
minor effect on the results, Fig. (Se- 5h).

As a consequence of the MC
simulation the required number for
simulating the aquifer with the FEM is =
non-dominant solutions(56) X number of
conductivity realizations(100) X number
of strings(100) X number generations(50
or 100} = (28 or 56) million simulations.
To simulate the desired aquifer millions
of times with the FEM, a computation
time for several days will be required.
Using the LU decomposition method
decreases significantly the computation
time to  only several  hours.
Unfortunately, that method is limited
only to linear problems which
corresponding to single aquifer, confined
or unconfined, with impervious straight
beds.

10-CONCLUSIONS AND
RECOMMENDATIONS

Within this work, two
formulations of multi  objective
management for coastal aquifer under
uncertainty of hydraulic conductivities
were examined for the first time in the
literature. The first of these formulations,
named the multiple realization method,
which provides reliable design by
simultaneously solving the nonlinear

simulation-optimization problem for a
representative  sample of conductivity
realizations. The optimal design strategy
is feasible for all realizations included in
the multi realization model. MC analysis
shows that design stralegies based on as
few as 10 conductivity realizations have
rehability ranges form 1 to 0.7 for the
non-dominant solutions. Only at limited
solutions the reliability reduces to 0.5.
{ncreasing number of realization from /¢
to 20 has a minor improvement on the
reliability level.

The second formulation, named
the MC method, solved the nonlinear
simulation-  optimizalion  problem
individually  for {00  conductivity
realizations. This method provides /00
deterministic  realizations of Pareto
frontiers which were used to estimate the
mean and the standard deviations at
different  non-dominant  solutions.
Resuits of the MC model showed that, as
SY increases the standard deviation of
maximum pumping rates increases and
the mean of pumping rates decreases.
Optimal solutions obtained from the
multi realization approach always less
than mean pumping rate corresponding
to the MC approach.

In this paper unconditional
random log-hydraulic conductivity fields
were generated to represent different
conductivily realizations of the studied
domain. Unconditional hydraulic
conductivity field implies that no data is
available to condition on. Such a
situation could occur in practice when no
measurements are available but more
general information about an aquifer
justifies a guess of the spatial statistical
parameters of its hydraulic conductivity
variation. Another possibility is the
availabilily of measurements outside the
area of interest, but close enough to be
representative  of its  heterogeneous
structure. Hoeksema [21] studied 31
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aquifers in USA and concluded that ¥
(logarithm of hydraulic conductivity}
can be simulated with dependent
correlated exponential covariance
models. So, it is recommended to
examine effect of uncertainty of different
controllable cocfficients within these
models. Also, it is recommended to
study conditional simulation using
information, from varicus bore loggings,
pumping tests and tracer tests, to reduce
the uncertainty  of the generated
conductivity realizations.
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